Ecosystem-scale call graphs

Mehdi Keshani

12:30 - 13:30

SERG Lunch
01 April 2020

]
TUDelft -

e Qutline

What is FASTEN and how it works
FASTEN plugins
How to scale call graph construction

Introducing a new approach for call graph construction on scale
Evaluation of the approach

© O O O O

FASTEN [| fuDelit -

What is FASTEN?

e The main aim of the FASTEN project is make software package management systems more robust
and Intelligent.
Call graph level analysis
e The project’s scientific objectives:
o Fine-grained ecosystem analysis for C, Java and Python
o Ecosystem-wide change impact analysis
o Compliance monitoring
O

FASTEN [| fupelit

How does it look like?

Vulnerability
Information

Package
Repositories

LY

[A]
(3= .:)‘ o)
O @

Call-graph construction

‘ Security h ‘ Compliancel/
Change Quality and
impact Risk
/A

Analysis layer

Storage layer

FASTEN server

—T> —mnm3

||

—C oosS

Mavepy

‘@

=
=
=

~

Continuous
Integration
Server

s

Developer

]
TUDelft

How it works?

USERS
o
o

A
®
R § FASTEN E / .--
2
Graph |- [2 . Call Graph || = Server 15 —
& Creator - Qg. « 0
7] .z‘ R
T <cg/edges> f’i fod c !
5 & i)
v] >)
T DependenC\/ <resolve/graph/ts> . v @ —
<temporal/graph/ts> Resol\/er Dataﬂow plug-lns] 8 gr o
> ' cq.° o
Kafka Kafka 4;—": 5" """" =
[Query }: Producers Consumers el S
l <query/ufi/meta> 7y
Metadata
<events/insert

>

Quality
and Risk
Security

Impact
Complianc
e

~3 Database (‘
ﬁimm Analyzers TUDelft s

Dataflow

e There is a combination of plugins interacting via Kafka

e Adataflow plugin is tool that accepts a record from a Kafka topic and produces one or more

records to a Kafka topic
e Inputs, outputs and Error handling is occurring within Kafka

e Distribution is handled by subscribing to the same Kafka consumer group

FASTEN
% Somume) Plugin e §g
kafka PASTEN kafka

]
TUDelft

i Service

Analyzers

e It's the core component of the FASTEN KB, which consists of:

o Security, Quality, Risk

m E.g. property propagation of quality measurements
o License and Compliance

m E.g. Investigating licencing per file using build graphs for Java, C and Python
o Change Impact Analysis

m E.g. Algorithms and heuristics for reachability on the call graphs like Updatera

FASTEN [| fupelit

CG Plug-in: External sources

e A Kafka Topic of all ecosystem libraries

e Acrawler was developed in Python to extract Maven coordinates

PR
HTTPClient/
abbot/

Maven =
V acegisecurity/

activation/

activecluster/

activeio/

activemq/

) activemg-jaxb/
—

activesoap/

activespace/

J a Va adarwin/

andromda/
annogen/

FASTEN O]

—

tps:/[repo1.maven.org/maven2

)

=

{"groupld": "avalon", "artifactld": "avalon-framework",
"version": "4.1.4", "date": "1127187900"}

8

kafka

]
TUDelft

https://repo1.maven.org/maven2/

Different frameworks

o WALA
o Heavy compare to OPAL
o FASTEN plugin
e OPAL
o Fast and Lightweight [1]
o Highly-configurable software product line [2]
o FASTEN plugin
o Usage
m As a Maven library
m Scala convertors in the plugin
[1] Reif, Michael, et al. "Judge: identifying, understanding, and evaluating sources of unsoundness in call graphs." Proceedings of the 28th

ACM SIGSOFT International Symposium on Software Testing and Analysis. ACM, 2019.
[2] Eichberg, Michael, and Ben Hermann. "A software product line for static analyses: the OPAL framework." Proceedings of the 3rd ACM

WSIGPLAN International Workshop on the State of the Art in Java Program Analysis. ACM, 2014. (‘

Java call graph generators

Table 4: Comparison of algorithms w.r.t. call graph size and runtime.

Project #Methods Sootcya SootrTA SootyTa SootgsparRk OPALRTA
all (incl. JDK) project #RM time #RM time #RM time #RM time #RM time
jasml 160 564 265 12184 18s 12134 75s 8012 17s 10356 22s 3195 13s
javacc 162484 2185 13035 22s 12986 97s 8863 22s 9752 17s 4222 12s
jext 163569 3270 34604 97s 34470 697s 20259 97s 20605 73s 15705 15s
proguard 165797 5498 36425 84s 36256 647s 20928 100s 28912 136s 7771 11s
sablecc 162670 2371 14138 18s 14088 104s 9687 24s 12101 24s 4932 11s
average 47.8s 324s 52s 54.4s 12.4s
Proieet #Methods WALARTA WALAy.cpa WALAN.ckPA WALAy.1-CFA DOOP(g
J all (incl. JDK) project #RM time #RM time #RM time #RM time #RM time
jasml 160 564 265 75817 362s timed out timed out timed out 14149 579s
javacc 163 484 2185 76643 399s timed out timed out timed out 14952 618s
jext 163569 3270 79513 411s timed out timed out timed out 27194 1698s
proguard 165797 5498 80240 465s timed out timed out timed out 18 205 949s
sablecc 162670 2371 77607 460 s timed out timed out timed out 15774 680 s
average 419.4s - = = 904.8 s

. “]
TUDelft «©

Call Graph Plugins

Reads from Kafka and writes to Kafka
Its service is to generate call graphs using call graph module
It is deployed on K8s

Normally generates 10 CG per second with 10 workers using OPAL

{["/org.apache.spark.repl.n20/H20IMainHelper$class.newREP
LDirectory(H20IMainHelper)%2Fjava.io%2FFile","//SomeDepe
ndency/scala/Option.getOrElse(Function0)%2Fjava.lang%2FO
bject"],["/org.apache.spark.repl.n20/H20IMainHelper$class.ne
WREPLDirectory(H20IMainHelper)%2Fjava.io%2FFile","//Som

" PR R ") Call Graph eDependency/java.lang/NullPointerException.NullPointerExce
:{'gI’OL.JplSi ;' al’l’[:' artlfla(":tld - "ant antlllr ’ . p Call araoh ption()Void"],["/org.apache.spark.repl.n20/H20IMainHelper$cla
version": "1.6", "date": "1127187840"} coordinate Plug-ln grap ss.newREPLDirectory(H20IMainHelper)%2Fjava.io%2FFile","/

/SomeDependency/org.apache.spark/SparkConf.getOption(%
2Fjava.lang%2F String)%2Fscala%2F Option"],["/org.apache.sp
ark.repl.h20/H20IMainHelper$class.newREPLDirectory(H20I
MainHelper)%2Fjava.io%2FFile","//SomeDependency/java.lan
g/NullPointerException.NullPointerException()Void"],["/org.apa
v che.spark.repl.h20/H20IMainHelper$class.newREPLDirectory(
Call graph H20IMainHelper)%2Fjava.io%2FFile","//SomeDependency/or
generator g.apache.spark/SparkConf.SparkConf()%Z2Fjava.lang%2FVoid

"],"timestamp":1492742760}
TUDelft «

But they are partial graphs!

e Partial program analysis
o When we do not analyze the entire program but only some parts of it
e EXxisting tools need entire class path (including libraries) to generate a whole program CG
e Alot of duplicate calculation
e |s there a better approach?

FASTEN [| fuDelit -

Solution

e GC generators (e.g. WALA) expect a full transitive closure per client
e Dependency resolution is time dependent
e Idea: Split CG construction from CG linking

o construction: make a call graph per package, mark linkage points and class hierarchy
information

o linking: after dependency resolution, link linkage points

FASTEN [| fuDelt -

What motivates us?

e Package management ecosystems are changing continuously
e There are almost 3M libraries only on Maven
e Duplicate calculations is a big challenge for scalability
o A majority of packages depends on a small minority of other packages [3]
o Variant dependency tree
e Use cases that need code analysis(e.g. FASTEN or Cls) with a lot of users
o They have to do a lot of duplicate computation per client
o Existing tools will calculate the full transitive closure CG per request
o With this approach result is one query away!

¥ 3] Alexandre Decan, Tom Mens, and Philippe Grosjean. 2019. An empirical comparison of dependency network evolution in seven software T U D I ft
packaging ecosystems. Empirical Software Engineering 24, 1 (2019), 381-416. e 14

Dynamic dispatch calls

e Example
a. What will it print if we run it?
b. What methods would be called at runtime?
c. What edges should the ideal call graph have?

1 public class DynamicDispatchExample {

2

3 public static void main(String[] args){

4 A b1 = new B();

5 A c1 = new C();

6

i/ A b2 = b1;

8 Ac2 =cl;

9

10 // what will get prir

1 b2 phEint(c2):;

12 ¥

13

14 public static class A extends Object {

15 public void print(A object) {

16 System.out.println("Instance of " + object.getClass().getSimpleName() + "passed to A");
17

18 }

19

20 public static class B extends A {

21 public void print(A object) {

22 System.out.println("Instance of " + object.getClass().getSimpleName() + "passed to B");
23]

24 ¥

25

26 public static class C extends B {

27 public void print(A object) {

28 System.out.println("Instance of " + object.getClass().getSimpleName() + "passed to C");
29

30 s

31

32 public static class D extends A {

33 public void print(A object) {

34 System.out.println("Instance of " + object.getClass().getSimpleName() + "passed to D");
35

36 }

]
TUDelft

Soundness

Run time: (b2.print (c2))to B's print

It could be tricky to statically determine the runtime type of b2 also to figure out exactly which method
would get called at runtime

We say a call graph is “sound” if it has all the edges that are possible at runtime

We say a call graph is “precise” if it does not have edges that do not occur at runtime

It is easy to be sound, but it is hard to be sound and precise

Soundness is very important in some use cases such as security

Sound algorithms over approximate

FASTEN [| fuDelit «

What algorithm to pick as the basis?

e Popular call graph construction algorithms
o Each of them has variations on the literature

Algorithm

RA

CHA

RTA

VTA

Description

Adds an edge to all reachable methods with similar signature.

Adds edges to methods declared in the subtype hierarchy of the declared
type of the receiver object (default for most static analysis)

Filters CHA edges based on the allocated objects in the reachable methods.

RTA + builds a graph of each variable and all of its assignments

Sound

- +

Precision Scalability

“]
TUDelft

What is needed from each package version

e Allinternal calls of the library

e Marked external calls to package boundary

e All types existing in the library for further CHA analysis
o List of its methods,
o Classes that extends,
o And interfaces that implements

FASTEN [| fuDelt «

Package version call graph

"product": "org.slf4j.slf4j-api",
"forge": "mvn",

"depset": [],
"version": "1.7.29",
"cha": {
"/org.slf4j/LoggerFactory": {
“sourceFile”: “Log.java”
"methods": [
["/org.slf4j/LoggerFactory.bind()%2Fjava.lang%2FVoid",1],

["/org.slf4j/LoggerFactory.replayEvents()%2Fjava.lang%2FVoid",2],
.

"superinterfaces": [],
"superClasses": ["/java.lang/Object"]

}1
"/org.slf4j.helpers/FormattingTuple": { ... },

2

FASTEN O]

"graph": [
"internalCalls": [
“.
oy
] ...
"externalCalls": [
[
.

”/lljava.lang/String.contains(CharSequence)Boolean”,

{

"invokevirtual": "1"

1,
"timestamp": 1574072773

]
TUDelft

19

Merge assumption

e Dependency tree is variant
o Merge algorithm should be independent of dependency tree

e Input: a package version call graph and a list of dependencies
e Output: fully resolved call graph of the first argument
e ResolvedCG_Pkg1:v1.0.0 = Merge(Pkg1:v1.0.0, List<Pkg>)
e Full dependency trees should be broken to pieces
<D,
1_resolved = Merge(1, {2, 3, 4})
25 3D (47 4_resolved = Merge(4, {5, 6, 7})
5 resolved = Merge(5, {8})
(55 (6> (7O 8 resolced = Merge(8, {9,10})

> (9O oD]
FASTEN [TUDelft =

Merge revision call graphs

e Entry points
o In within-library scenario: (!Abstract && !Private) methods
o In merge scenario: External calls
e RA
o Search for the external node’s signature in direct dependencies

for (call in external calls) {
for (dependency in dependencies) {
for (method in dependency.methods()) {
if (call.target().signature() == method.signature()) {
resolve(call);
b

I

N—_=OWo~NOUIRWN =

—_

Pseudocode of RA merge algorithm

:

“]
TUDelft =

CHA

o O O O O

Merge revision

For each call target of external call

Extract the receiver type

Search for receiver type in direct deps
Subtypes of the receiver type in direct deps
Search for the target’s signature

In receiver type and all of its subtypes

FASTEN O]

call graphs

for (call in external calls) {
if (isDynamicDispatched(call)) {
for (dependency in dependencies) {
for (type in dependency.types()) {
if(type == call.receiverType() o

type inherits from call.receiverType() o
type Implements call.receiverType()){

if (type.implementsMethod(call.target())) {
resolve(call)

}
{7

¥
} else {

for (dependency in dependencies) {

ependency.types()) {

if (type == call.receiverType() and
type.ImplementsMethod(call.target()))
resolve(call)
}
i
}
}

Pseudocode of CHA merge algorithm

]
TUDelft

22

How to Evaluate?

e Soundness:
o Compare with the soundness of the base framework
o Run both algorithms on a benchmark
o Compare the soundness and precision
o Goal: Be similar to the base framework as much as possible
e Scalability
o Compare with the scalability of the base framework
o Run both algorithms on the whole or a substantial portion of an ecosystem
o Compare the computation time
o Goal: be better than base framework

FASTEN [| fuDelit -

Soundiness

There exists a paradox in static analysis
o Some language features can make call graph
construction undecidable
o Static analysis tools
m Onone hand try to be sound
m On the other hand deliberately not very
supportive for all language features
Experts in field came up with the concept of Soundines
o A soundy analysis aims to be as sound
as possible without excessively compromising
precision and/or scalability.

In Defense of Soundiness:
A Manifesto

Soundy is the new sound.

TATIC PROGRAM ANALYSIS i§
a key component of many
software development tools,
including compilers, devel-
opment environments, and

verification tools. Practical applications
of static analysis have grown in recent
years to include tools by companies such
as Coverity, Fortify, Gramma'Tech, IBM,
and others. Analyses are often expected
to be sound in that their result models
all possible executions of the program
under analysis. Soundness implies the
analysis computes an over-approxima-
tion in order to stay tractable; the analy-
sis result will also model behaviors that
do not actually occur in any program
execution. The precision of an analysis
is the degree to which it avoids such
spurious results. Users expect analyses
to be sound as a matter of course, and
desire analyses to be as precise as pos-
sible, while being able to scale to large
programs.

Soundness would seem essential
for any kind of static program analy-
sis. Soundness is also widely empha-
sized in the academic literature. Yet,
in practice, soundness is commonly
eschewed: we are not aware of a single

that does not purposely make unsound
choices. Similarly, virtually all pub-
lished whole-program analyses are un-
sound and omit conservative handling
of common language features when
applied to real programming languages.

dominant practice is one of treating
soundness as an engineering choice.
In all, we are faced with a paradox:
on the one hand we have the ubiquity
of unsoundness in any practical whole-
program analysis tool that has a claim

“]
TUDelft 2

Benchmark

Table 1: Overview of the Test Suite.

Category Abbreviation # Test Cases

. . . Classloadin CL 4

e There is a benchmark of 122 test cases considering all s DP 1
. .. . Interface Default Methods J8DIM 6
possible types of call in java annotated with the real edges [1] Static Interface Methods J8SIM 1
Java 8 invokedynamics MR/Lambda 11

e Steps: JVM Calls JVMC 5
Library Analysis LIB 5

o Extract test cases Trivial Reflection . TR 9
Locally Resolveable Reflection LRR 3

1 1 1 Context-sensitive Reflection CSR 4

o Compile and create jar files from them Context-sensitiv coi :

H 1 H H 1 Class.forname Exceptions CFNE 4

o Split the jar files to the different class files s fomame Becp e .
o Once generate CG for the jar file with the base framework porialization v ;
o Once generate partial CGs for class files with the base framework | e soymonbic Methods ——sort :

. Static Initializers SI 8

o Merge partial CGs TYPES 6

. . . . Unsafe - 7

o Run CGMather on jar file CG to match with annotations Virtual Calls ve "

. . Java 9/10 Features Jo+ 2

o Run CGMather on Merged CG to match with annotations Non-Java Bytecode NJB 6
o Compare the output (sound/unsound/imprecise) Torl =

~3 [1] Reif, Michael, et al. "Judge: identifying, understanding, and evaluating sources of unsoundness in call graphs. (‘
" Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis. ACM, 2019. T U De I ft 25

Comparison?

Language feature Framework Sound Unsound Imprecise Comparison
Merge V x x V
CL1
Base framework v x x Vv
Merge x v x
CL2 Address why
Base framework v x x
NJB6

“]
TUDelft =

Scalability

e Steps:

o

© O O O O

Calculate dependency trees for all maven libraries
Construct partial CGs using base framework
Store partial CGs in DB

Merge partial CGs with a DB query

Construct CGs using base framework

Compare the calculation time

FASTEN O]

“]
TUDelft =

Thanks!

“]
TUDelft 2

