
Ecosystem-scale call graphs

Mehdi Keshani
12:30 - 13:30

SERG Lunch
01 April 2020

1

● Outline
○ What is FASTEN and how it works
○ FASTEN plugins
○ How to scale call graph construction
○ Introducing a new approach for call graph construction on scale
○ Evaluation of the approach

2

What is FASTEN?

● The main aim of the FASTEN project is make software package management systems more robust
and Intelligent.

● Call graph level analysis
● The project’s scientific objectives:

○ Fine-grained ecosystem analysis for C, Java and Python
○ Ecosystem-wide change impact analysis
○ Compliance monitoring
○ ...

3

How does it look like?

4

How it works?
FASTEN
ServerGraph

Dependency
Resolver

Call Graph
CreatorCo

nn
ec

to
r

Query

Metadata

Co
nn

ec
to

r

Query

<
e
v
e
n
t
s

>

<events/insert
>

<
e
v
e
n
t
s
/
p
a
c
k
a
g
e
/
n
e
w
>

<query/ufi/meta>

<temporal/graph/ts>

<resolve/graph/ts>

US
ER

S

<cg/edges>

Se
cu

rit
y

Im
pa

ct

Co
m

pl
ia

nc
e

Qu
al

ity

an
d

Ri
sk

Analyzers

RE
ST

 A
PI

Ex
te

rn
al

pl

ug
-in

s

Database

Kafka
Producers

Kafka
Consumers

Dataflow plug-ins

CI
 S

er
ve

rs

5

● There is a combination of plugins interacting via Kafka

● A dataflow plugin is tool that accepts a record from a Kafka topic and produces one or more

records to a Kafka topic

● Inputs, outputs and Error handling is occurring within Kafka

● Distribution is handled by subscribing to the same Kafka consumer group

Dataflow

FASTEN
Plug-inConsume

records
Produce
records

FASTEN
Service

6

Analyzers

● It’s the core component of the FASTEN KB, which consists of:

○ Security, Quality, Risk
■ E.g. property propagation of quality measurements

○ License and Compliance
■ E.g. Investigating licencing per file using build graphs for Java, C and Python

○ Change Impact Analysis
■ E.g. Algorithms and heuristics for reachability on the call graphs like Updatera

7

CG Plug-in: External sources

● A Kafka Topic of all ecosystem libraries

● A crawler was developed in Python to extract Maven coordinates

https://repo1.maven.org/maven2/

{"groupId": "avalon", "artifactId": "avalon-framework",
"version": "4.1.4", "date": "1127187900"}

8

https://repo1.maven.org/maven2/

Different frameworks

● WALA
○ Heavy compare to OPAL
○ FASTEN plugin

● OPAL
○ Fast and Lightweight [1]
○ Highly-configurable software product line [2]
○ FASTEN plugin
○ Usage

■ As a Maven library
■ Scala convertors in the plugin

[1] Reif, Michael, et al. "Judge: identifying, understanding, and evaluating sources of unsoundness in call graphs." Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis. ACM, 2019.
[2] Eichberg, Michael, and Ben Hermann. "A software product line for static analyses: the OPAL framework." Proceedings of the 3rd ACM
SIGPLAN International Workshop on the State of the Art in Java Program Analysis. ACM, 2014.

9

Java call graph generators

10

Call Graph Plugins
● Reads from Kafka and writes to Kafka

● Its service is to generate call graphs using call graph module

● It is deployed on K8s

● Normally generates 10 CG per second with 10 workers using OPAL

Call Graph
Plug-in Call graph

Call graph
generator

Maven
coordinate

{"groupId": "ant", "artifactId": "ant-antlr",
"version": "1.6", "date": "1127187840"}

{["/org.apache.spark.repl.h2o/H2OIMainHelper$class.newREP
LDirectory(H2OIMainHelper)%2Fjava.io%2FFile","//SomeDepe
ndency/scala/Option.getOrElse(Function0)%2Fjava.lang%2FO
bject"],["/org.apache.spark.repl.h2o/H2OIMainHelper$class.ne
wREPLDirectory(H2OIMainHelper)%2Fjava.io%2FFile","//Som
eDependency/java.lang/NullPointerException.NullPointerExce
ption()Void"],["/org.apache.spark.repl.h2o/H2OIMainHelper$cla
ss.newREPLDirectory(H2OIMainHelper)%2Fjava.io%2FFile","/
/SomeDependency/org.apache.spark/SparkConf.getOption(%
2Fjava.lang%2FString)%2Fscala%2FOption"],["/org.apache.sp
ark.repl.h2o/H2OIMainHelper$class.newREPLDirectory(H2OI
MainHelper)%2Fjava.io%2FFile","//SomeDependency/java.lan
g/NullPointerException.NullPointerException()Void"],["/org.apa
che.spark.repl.h2o/H2OIMainHelper$class.newREPLDirectory(
H2OIMainHelper)%2Fjava.io%2FFile","//SomeDependency/or
g.apache.spark/SparkConf.SparkConf()%2Fjava.lang%2FVoid
"]],"timestamp":1492742760}

11

But they are partial graphs!

● Partial program analysis
○ When we do not analyze the entire program but only some parts of it

● Existing tools need entire class path (including libraries) to generate a whole program CG
● A lot of duplicate calculation
● Is there a better approach?

12

Solution

● GC generators (e.g. WALA) expect a full transitive closure per client
● Dependency resolution is time dependent
● Idea: Split CG construction from CG linking

○ construction: make a call graph per package, mark linkage points and class hierarchy
information

○ linking: after dependency resolution, link linkage points

13

What motivates us?

● Package management ecosystems are changing continuously
● There are almost 3M libraries only on Maven
● Duplicate calculations is a big challenge for scalability

○ A majority of packages depends on a small minority of other packages [3]
○ Variant dependency tree

● Use cases that need code analysis(e.g. FASTEN or CIs) with a lot of users
○ They have to do a lot of duplicate computation per client
○ Existing tools will calculate the full transitive closure CG per request
○ With this approach result is one query away!

[3] Alexandre Decan, Tom Mens, and Philippe Grosjean. 2019. An empirical comparison of dependency network evolution in seven software
packaging ecosystems. Empirical Software Engineering 24, 1 (2019), 381–416. 14

Dynamic dispatch calls
● Example

a. What will it print if we run it?
b. What methods would be called at runtime?
c. What edges should the ideal call graph have?

15

Soundness

● Run time: (b2.print(c2)) to B’s print
● It could be tricky to statically determine the runtime type of b2 also to figure out exactly which method

would get called at runtime
● We say a call graph is “sound” if it has all the edges that are possible at runtime
● We say a call graph is “precise” if it does not have edges that do not occur at runtime
● It is easy to be sound, but it is hard to be sound and precise
● Soundness is very important in some use cases such as security
● Sound algorithms over approximate

16

What algorithm to pick as the basis?

Algorithm Description Sound Precision Scalability

RA Adds an edge to all reachable methods with similar signature. ✔ -

+

+

-

CHA Adds edges to methods declared in the subtype hierarchy of the declared
type of the receiver object (default for most static analysis)

✔

RTA Filters CHA edges based on the allocated objects in the reachable methods. 𐄂

VTA RTA + builds a graph of each variable and all of its assignments 𐄂

● Popular call graph construction algorithms
○ Each of them has variations on the literature

17

What is needed from each package version

● All internal calls of the library
● Marked external calls to package boundary
● All types existing in the library for further CHA analysis

○ List of its methods,
○ Classes that extends,
○ And interfaces that implements

18

Package version call graph
{
 "product": "org.slf4j.slf4j-api",
 "forge": "mvn",
 "depset": [],
 "version": "1.7.29",
 "cha": {
 "/org.slf4j/LoggerFactory": {

“sourceFile”: “Log.java”
 "methods": [
 ["/org.slf4j/LoggerFactory.bind()%2Fjava.lang%2FVoid",1],
 ["/org.slf4j/LoggerFactory.replayEvents()%2Fjava.lang%2FVoid",2],
 …],
 "superInterfaces": [],
 "superClasses": ["/java.lang/Object"]
 },
 "/org.slf4j.helpers/FormattingTuple": { … },

...
 },

 "graph": [
"internalCalls": [
 “1”,
 “2”
], …
"externalCalls": [
 [
 “2”,
 ”///java.lang/String.contains(CharSequence)Boolean”,
 {
 "invokevirtual": "1"
 }
]
,...

],
 "timestamp": 1574072773
}

19

Merge assumption
● Dependency tree is variant

○ Merge algorithm should be independent of dependency tree
● Input: a package version call graph and a list of dependencies
● Output: fully resolved call graph of the first argument
● ResolvedCG_Pkg1:v1.0.0 = Merge(Pkg1:v1.0.0, List<Pkg>)
● Full dependency trees should be broken to pieces

1

2 3 4

5 6 7

8

10 9

1_resolved = Merge(1, {2, 3, 4})
4_resolved = Merge(4, {5, 6, 7})
5_resolved = Merge(5, {8})
8_resolced = Merge(8, {9,10})

20

Merge revision call graphs
● Entry points

○ In within-library scenario: (!Abstract && !Private) methods
○ In merge scenario: External calls

● RA
○ Search for the external node’s signature in direct dependencies

Pseudocode of RA merge algorithm

21

Merge revision call graphs

● CHA
○ For each call target of external call
○ Extract the receiver type
○ Search for receiver type in direct deps
○ Subtypes of the receiver type in direct deps
○ Search for the target’s signature
○ In receiver type and all of its subtypes

Pseudocode of CHA merge algorithm

22

How to Evaluate?

● Soundness:
○ Compare with the soundness of the base framework
○ Run both algorithms on a benchmark
○ Compare the soundness and precision
○ Goal: Be similar to the base framework as much as possible

● Scalability
○ Compare with the scalability of the base framework
○ Run both algorithms on the whole or a substantial portion of an ecosystem
○ Compare the computation time
○ Goal: be better than base framework

23

Soundiness

● There exists a paradox in static analysis
○ Some language features can make call graph

construction undecidable
○ Static analysis tools

■ On one hand try to be sound
■ On the other hand deliberately not very

supportive for all language features
● Experts in field came up with the concept of Soundines

○ A soundy analysis aims to be as sound
as possible without excessively compromising
precision and/or scalability.

24

Benchmark

● There is a benchmark of 122 test cases considering all
possible types of call in java annotated with the real edges [1]

● Steps:
○ Extract test cases
○ Compile and create jar files from them
○ Split the jar files to the different class files
○ Once generate CG for the jar file with the base framework
○ Once generate partial CGs for class files with the base framework
○ Merge partial CGs
○ Run CGMather on jar file CG to match with annotations
○ Run CGMather on Merged CG to match with annotations
○ Compare the output (sound/unsound/imprecise)

[1] Reif, Michael, et al. "Judge: identifying, understanding, and evaluating sources of unsoundness in call graphs.
" Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis. ACM, 2019. 25

Comparison?

Language feature Framework Sound Unsound Imprecise Comparison

CL1
Merge ✔ 𐄂 𐄂 ✅

Base framework ✔ 𐄂 𐄂 ✅

CL2
Merge 𐄂 ✔ 𐄂

Address why
Base framework ✔ 𐄂 𐄂

...

NJB6

26

Scalability

● Steps:
○ Calculate dependency trees for all maven libraries
○ Construct partial CGs using base framework
○ Store partial CGs in DB
○ Merge partial CGs with a DB query
○ Construct CGs using base framework
○ Compare the calculation time

27

Thanks!

28

