
IN4315, Software
Architecture

Lecture 8

• Configurability
• Managing change
• Technical Debt
• Better Writing
• Wrap Up

1

2

The Theory of Software Product Lines

• Reusable software infrastructure
• With “variation points” that can be configured
• To derive many different software products
• Variation can be “bound” at compile time, start-up time, run time, ...
• Variation points: from Boolean flags to plugins loaded at run time
• Single variation point can crosscut many infrastructure “assets”
• Variability can be modeled using “feature diagrams”
• Widely studied research topic in design, implementation, testing, ...

Linux: 12,000 options
Thus: 2^12,000

different products

3

Feature (= Option) Modeling

4

ht
tp

s:
//

m
ar

tin
fo

w
le

r.c
om

/a
rt

ic
le

s/
fe

at
ur

e-
to

gg
le

s.
ht

m
l

5

ht
tp

s:
//

m
ar

tin
fo

w
le

r.c
om

/a
rt

ic
le

s/
fe

at
ur

e-
to

gg
le

s.
ht

m
l

6

7

Software Evolution

• Evolution is what makes software valuable

• Software success generates ideas for new system usage
• Business opportunities
• Integration with other systems
• Legal constraints

• But ... lots of evolution may erode the system
• The “software evolution paradox”

8

Ch. 3

9

Ch. 3

10

Keeping Software Soft

• Ensuring software can be easily changed
• Ensuring changes don’t deteriorate future evolvability

• Relevant to virtually any software system that is actually used:
• Especially the active open source systems as studied in this course

• How can you architect for “high rates of change”?

11

Architecting for High Rates of Change?

• Clear separation of concerns
• Clear rules for architectural integrity
• Patterns, constraints, ...

• “Automate Everything”
• Infrastructure as code, test execution, linters, ...

• Carefully designed test infrastructure
• Making it easy to test new features

• Well-defined code reviewing process
• Continuous integration / delivery / deployment

12

(Automating) Quality Assurance

• Collection of procedures put in place to ensure that
system continues to meet (pre-set) quality objectives
• Procedures will differ per quality attribute
• High levels of automation facilitate continuous

evolution

• [Can be highly regulated for safety-critical domains:
• Health, (self-)driving cars, aviation, finance, ...]

13

Testing and Architecture

• Testability as explicit quality attribute
• Testing as the guide that helps to reach a good design
• The test harness:
• Common (mock, stub) objects that ease testing
• Example test cases that can be easily adjusted
• Reuse of test code among test cases

• Test coverage:
• What types of coverage are monitored?
• What is the coverage of key components?
• How is test coverage information used?

14

Testing and Architecture (cont.)

• Test execution:
• Test cases run on every commit (duration?)
• Long-running / expensive test cases for performance, portability?

• Coding standards / style of the test code
• Test suite modularization
• Test culture (what people actually do):
• Are tests part of the discussion in pull requests?
• Do pull requests typically come with test cases?
• What is the test code / production code ratio?

Assess for your
system!

15

The Quality Culture

• Prescriptive: Quality practices as they should take place
• Descriptive: Quality practices as actually adopted.

• “Ethnography” of open source activities can reveal actual practices
• Discussions in issues and pull requests:
• Will help reveal properties that really matter in the system
• And how those properties are safeguarded

16

Differences in Rates of Change: Hotspots

• Not all components may change at equal rates
• Hotspot components change faster than others
• Hotspot may be consequence of poor design
• Monolithic class that no one dares to break up – need to refactor?

• Hotspots of the past:
• Likely to have suffered from too many changes – should it be cleaned up?

• Hotspots of the future:
• Map future use cases from roadmap onto component view
• Consider refactoring now to isolate change

17

18

https://codescene.com/
(Bitwarden DESOSA 2021)

https://codescene.com/

What Is Technical Debt?

• Ward Cunningham:
• “I coined the debt metaphor to explain

the refactoring that we were doing.”

• Michael Feathers:
• “The refactoring effort needed to add a

feature non invasively”

19

https://www.youtube.com/watch?v=7hL6g1aTGvo

http://c2.com/cgi/wiki?WardExplainsDebtMetaphor

https://www.youtube.com/watch?v=7hL6g1aTGvo
http://c2.com/cgi/wiki?WardExplainsDebtMetaphor

https://martinfowler.com/bliki/TechnicalDebt.html
20

Technical Debt vs Code Quality

• Several static analysis tools to detect
• Code smells
• Maintainability issues
• Vulnerabilities

• Very useful code analysis tools
• Substantial insight in code (structure) / quality
• Somewhat narrow interpretation of technical debt. E.g. SonarQube:

“Estimated time required to fix all maintainability issues / code smells”

http://www.sqale.org/

21

http://www.sqale.org/

A lot of bloggers at least
have explained the debt metaphor and confused it, I think,

with the idea that you could write code poorly
with the intention of doing a good job later

and thinking that that was the primary source of debt.

I'm never in favor of writing code poorly.

I am in favor of writing code to reflect
your current understanding of a problem

even if that understanding is partial

22
http://c2.com/cgi/wiki?WardExplainsDebtMetaphor

23

The refactorings that have the greatest impact on the viability of the system
are those motivated by new insights into the domain

or those that clarify the model’s expression through the code.

This type of refactoring does not in any way replace
the refactorings to design patterns or the micro-refactorings,

which should proceed continuously.

It superimposes another level: refactoring to a deeper model.

Executing a refactoring based on domain insight often involves
a series of micro-refactorings, but the motivation is not just the state of the code.

Rather, the micro-refactorings provide convenient units of change
toward a more insightful model.

The goal is that not only can a developer understand what the code does;
they can also understand why it does what it does

and can relate that to the ongoing communication with the domain experts

24

New functionalityPositive
value

Architecture
Structure facilitating

change

Visible Invisible

Negative
value Bugs Technical debt

Kruchten, 2013:
The (missing) value of software architecture

Debt Versus Value

25

Measure It? Manage It? Ignore It?
Software Practitioners and
Technical Debt

Ernst et al, ESEC/FSE 2015
26

27

Beware: Debt is Relative

• The refactoring effort needed to resolve issue non invasively
• Debt depends on features and issues to solve
• Debt relevance depends on system’s roadmap

• Systems are used and society progresses
• New libraries and versions come available, may make code obsolete
• Actual usage affects our understanding of what matters

• Debt quantifications are only useful when they lead to action.
• Rants / complaints that all code is bad are not helpful;
• Propose rational action instead.

28

Conway’s Law

“Organizations which design systems ...
are constrained to produce designs

which are
copies of the communication structures

of these organizations”

Melvin Conway, 1968
29

30

Socio-Technical
Congruence

• Are technical dependencies
aligned with organizational
dependencies?
• Who is talking to whom?
• Does component-to-team

allocation affect productivity?

31

32

33

34

Essay 4: Scalability

35

36

37https://www.sec.gov/Archives/edgar/data/1018724/000119312518121161/d456916dex991.htm

38

39https://100x.engineering/the-power-of-the-narrative/

The Science of Scientific Writing

• Stress position:
• The end of a sentence
• Save the best for the last

• The topic position:
• The start of the sentence
• Gives meaning to what will come
• Builds on / is connected to

preceding arguments

• Connect sentences, paragraphs,
chapters like this

1. The backward-linking old
information appears in the
topic position.

2. The person, thing or concept
whose story it is, appears in
the topic position.

3. The new, emphasis-worthy
information appears in the
stress position.

40https://www.americanscientist.org/blog/the-long-view/the-science-of-scientific-writing

Four Roles in the Writing Process

• Madman: Full of ideas, writes crazily and perhaps rather sloppily, gets carried
away by enthusiasm or anger, and if really let loose, could turn out ten pages an
hour.
• Architect: Select large chunks of material and arrange them in a pattern that

might form an argument. The thinking is large, organizational, paragraph-level ---
the architect doesn't worry about sentence structure.
• Carpenter: Nails these ideas together in a logical sequence, making sure each

sentence is clearly written, contributes to the argument of the paragraph, and
leads logically and gracefully to the next sentence.
• Judge: Punctuation, spelling, grammar, tone --- all the details which result in a

polished essay

http://www.ut-ie.com/b/b_flowers.html
41

"Crisp, clear writing is essential to communicating
on behalf of oneself and one’s causes.

Vague expressions, euphemisms, and jargon are often manifestations of not
being entirely sure of one’s point or purpose, and they hold us back.

In 1946 Orwell was so exasperated by the debasement of language he saw
around him that he wrote a short pamphlet with guidelines for precision.

I reread it every year as a reminder to
'never use a long word when a short one will do’, and to

'let the meaning choose the word, and not the other way around.'"

ht
tp
s:
//
w
w
w
.g
la
m
ou

r.c
om

/g
al
le
ry
/b
oo

ks
-in

te
rn
at
io
na
l-d

ay
-o
f-t
he

-g
irl

42

Samantha Power George Orwell

Orwell on Writing

• Never use a long word where a short one will do.
• If it is possible to cut a word out, always cut it out.
• Never use a foreign phrase, a scientific word or a jargon word if you

can think of an everyday English equivalent.
• Never use the passive where you can use the active.
• Never use a metaphor, simile or other figure of speech which you are

used to seeing in print.
• Break any of these rules sooner than say anything barbarous.

43

Essay Evaluation Criteria

44

Essay Peer Review

• Objective 1: Learn from other essay
• Objective 2: Give other team feedback

• Open questions (free text):
• How you understood the essay (the key take-aways)
• Strengths and points for improvement

• Closed questions (Likert scale):
• Specific questions on scale from 1-5

Recommendation:
Allocate 4 hours per

review

45

Dialectic Learning in Architecture

1. Just do it: Engage in architectural activities in realistic setting
2. Study / internalize existing theories and approaches
3. Confront the two with each other
• How does this theory really work?
• Does this theory apply to my system? Why? Why not?

Thesis: Theory
Anti-Thesis: Practice
Synthesis: Understanding

46

Q&A

• What did you learn from the coaches?
• What can others learn from you?
• What is unclear?
• How are the essays progressing?
• How are the contributions progressing?
• Do your Mattermost and journals reflect your true activity?
• ...

47

48

