
IN4315 Lecture 5:
Views and Beyond

Arie van Deursen

1

2

Coaching

• Coaching: Nine coaches available
• Briefing of coaches today
• Ready for coach meetings from Thu / Fri onwards
• Coaches are available for 2-3 meetings in weeks 3-7
• TA Erik Sennema will coordinate assignment to teams
• Prepare meetings well:

• agenda, round of introductions, presentation with status update, questions
you have, options to explore, contributions, ...

• Primary objective: help you (not grade you)

3

4

A Catalogue of “ilities”

• Meta Measurability, auditability
• Functionality Correctness, completeness
• Design Modularity, reusability
• Operation Usability, performance, scalability
• Failure Recoverability, reliability, availability
• Attack Privacy, confidentiality, integrity
• Change Flexibility, extensibility, configurability
• Long-term Maintainability, explainability

Ch. 2

5

6

Nassim Taleb: Antifragile

Some things benefit from shocks;
they thrive and grow when exposed to

volatility, randomness, disorder, and stressors
and love adventure, risk, and uncertainty.

Yet, in spite of the ubiquity of the phenomenon,
there is no word for the exact opposite of fragile.

Let us call it antifragile.
Antifragility is beyond resilience or robustness.
The resilient resists shocks and stays the same;

the antifragile gets better

7

Essay E1: Product Vision

1. Characterization of what the project aims to achieve
2. The key domain concepts (underlying domain model)
3. The system’s main capabilities (e.g. use cases), visible to (end) user
4. The current/future (external) context in which the system operates
5. The stakeholders involved in the project, and what they need from

the system so that it is beneficial to them
6. The key quality attributes the system must meet
7. A product roadmap for the upcoming years
8. Ethical considerations of the system and its construction process

8

What’s a Good Essay?

9

Some Essay Advice

• Keep your audience in mind:
• “computer science students or software engineers, interested in learning

about architectural aspects of your open source project.”

• Be courageous – dare to deviate

• Let the system be leading, not the fulfillment of an assignment

• Invest time and let it show – dig as deep as you can

10

Using “Architectural Views” to
Organize Architectural Models
• No single modeling approach can capture the

entire complexity of a software architecture
• Various parts of the architecture (or views) may

have to be modeled with a different:
• Notation
• Level of detail
• Target audience

• A view is a set of design decisions related by
common concerns (the viewpoint)

Ch. 4

11

12

Views on
Kessel
Castle
Keverberg

13

The legacy view 1944

1850

1400
(motte)

14

Modeling the
Foundations

15

A view on the roof

16

A view
on the
floors

Design pattern
from Le Corbusier

17

A view
on the
air flow

18

The Room Configuration View

19

A view
on the
context

20

Views on
Kessel
Castle
Keverberg

Reconstruction 2015

21

ht
tp

:/
/w

w
w

.c
od

in
gt

he
ar

ch
ite

ct
ur

e.
co

m
/2

01
5/

01
/0

8/
sh

ne
id

er
m

an
s_

m
an

tr
a.

ht
m

l

https://c4model.com/
22

Ch. 4

23

24

Ch. 4

25

26

27

28

Can you think of a
(different) types of

connectors for each line
between two
components?

Ch. 4

Connectors
View
Example

29

Ch. 4

Philippe Kruchten’s “4+1 Views”

30

IE
EE

 S
of

tw
ar

e,
 N

ov
em

be
r 1

99
5

Kruchten’s “Logical View”

• Similar to C4 component view

• Decompose the system structure into
software components and connectors

• Map functionality/requirements/use cases onto the components

• Concern: Functionality
• Target Audience: Developers and Users

31

Ch. 4

www.plantuml.com
32

Ch. 4

Kruchten’s “Process View”

• Model the dynamic aspects of the architecture:
• Which are the active components?
• Are there concurrent threads of control?
• Are there multiple distributed processes in the system?
• What is the behavior of (parts of) the system?

• Describe how processes/threads communicate
(e.g., remote procedure call, messaging connectors)
• Concern: Functionality, Performance
• Target Audience: Developers

33

Ch. 4

www.plantuml.com
34

Ch. 4

Kruchten’s “Development View”

• Static organization of the software code artifacts
(packages, modules, binaries...)
• Map logical view onto code
• Describe code review, contribution, and build process

• Concern: Reuse, Portability, Build
• Target Audience: Developers

35

First line of thinking for
“us, developers”

Ch. 4

ht
tp

s:
//

w
w

w
.b

le
nd

er
.o

rg
/b

f/
co

de
la

yo
ut

.jp
g

36

37

38

39

Kruchten’s “Physical View”

• Define the hardware environment (hosts, networks, storage, etc.)
where the software will be deployed
• Different hardware configurations for providing different qualities
• Deployment View: Mapping between logical and physical entities
• Virtual is the new physical

• Amazon’s “AWS Well-Architected Framework”

• Concern: Performance, Scalability, Availability, Reliability, Security
• Target Audience: Operations

40

Ch. 4

4+1: Connecting
Kruchten’s
Views with Use Cases
• Views should not contradict

each other
• Use cases can be “executed”

in each view

41

Ch. 4

Rozanski & Woods Viewpoint Taxonomy

42

43

“SEI DSA” Taxonomy
“View types”:
• Module
• Component & Connector
• Allocation

Component & connectors:
• Pipe and filter, shared data,

publish subscribe, client-server,
p2p, …

44

Ch. 5

45

Ch. 6

46

Application Programming Interfaces

• APIs can be found in
architectures that are
designed to be
• open and stable platforms
• supporting externally

developed components and
applications.

Ch. 6

47

API Design Principles: Your Answers?

• Easy to understand
• Usability
• Simplicity
• Small interfaces

• Quality of Service:
• Scalability, Reliable, Available

• Compliance with standards
• RESTful

• Licensing

• Naming consistency (end points,
parameters, methods)
• Robust against untrusted clients

• Security
• Authentication

• Defensive API
• Meaningful error messages
• Compatibility

48

Ch. 6

http://www.cs.bc.edu/~muller/teaching/cs102/s06/lib/pdf/api-design

49

Ch. 6

https://www.youtube.com/watch?v=aAb7hSCtvGw50

Ch. 6

51

API Design Principles

• Explicit interfaces principle
• Principle of least surprise
• Small interfaces principle
• Uniform access principle
• Few interfaces principle
• Clear interfaces principle

• Maximize information hiding
• 90% immediate use; 9% with

effort; .9% misuse
• Balance usability and reusability
• Balance performance and

reusability
• Design from client’s perspective

Ch. 6

52

API Reflection

• Consider an application you know well
• Which public APIs does it expose?
• Does the API realize a clear, compelling function?
• Which of the principles discussed does it adhere to explicitly?

• Which ones does it violate?

• Is the design rationale behind the API documented?

53

Essay 2: The System’s Architecture

Essay 2: The System’s Architecture

10

54

Dialectic Learning in Architecture

1. Just do it: Engage in architectural activities in realistic setting
2. Study / internalize existing theories and approaches
3. Confront the two with each other

• How does this theory really work?
• Does this theory apply to my system? Why? Why not?

Thesis: Theory
Anti-Thesis: Practice
Synthesis: Understanding

55

This Year’s 38 Teams and Systems

56

The Open Source Architect

• Overall technical decision maker
• Keeper of the vision in times of change:

• What comes in, what goes out
• Design integrity

• Design principles guiding changes to code
• Quality trade-offs
• Evolution of underlying principles

• Quality assurance: guidelines + control
• Stakeholder management:

• Listen to the community, prioritize

57

Learning from Contributing

• Create a meaningful contribution, and request it to be merged (“pulled”)
• Use this to try to understand the full decision making process

• Feel the “hands of the architects”:
• Trade-offs, prioritization, coding practices, quality control, culture, interaction

• Receive feedback on your own code and way of working
• Explicit (in comments) or implicit (just a merge / reject)

58

The Many Shapes of Open Source Contributions

• Documentation
• Internationalization
• Report an issue
• Add some tests (e.g. reproducing a bug)
• Fix a reported bug (with test case)
• Add requested feature (with test case)
• Propose feature (in issue) and build it
• Remove unused or redundant code
• ...

START SIMPLE!

The more interaction with other
developers are needed, the more

you’ll learn about the architecture,
and how it guides the decision

making process

59

Getting it Accepted

• Study CONTRIBUTING.md
• Study earlier accepted / rejected

pull requests
• Start with simple / starter issues
• Keep it small and simple
• Be clear, concise, and polite
• Know your tools (git, build, ...)

60

CLA: The Contributor
License Agreement
• Individual license:

• You contributed in your own time
• You own your code
• You can give it away
• Case for TU Delft students

• Corparate license:
• You contributed while being paid

by a company
• Company owns your code
• Company can give it away
• Case for TU Delft employees 61

What to Avoid (I)

• One Pull Request doing more than one thing
• PR not addressing an issue (open issue first)
• PR making many small stylistic (subjective) changes

• Usually these are unpopular (if it ain’t broke don’t fix it)
• First open issue explaining why you think specific technical debt must be

fixed; then offer yourself as volunteer.

• Code not following coding standards / culture (layout, tests, ...)
• Code breaking the automated build

62

What to Avoid (II)

• Not responding to comments from integrators

• Asking questions without trying to figure them out yourself
• Better: I searched in A,B,C, but could not find answer to X,Y,Z

• Messy commits in your feature branch
• Merges from main (master) back into feature branch
• Unclear commit messages
• PR on too old main commit

(rebase feature branch to most recent main commit before creating PR)

63

Seven Rules of a Great Commit Message

1. Limit first (subject) line to 50 characters
2. Use the imperative mood in subject line
3. Capitalize the subject line
4. Separate subject line from body by new line
5. Do not end subject line with period

6. Wrap the body at 72 characters
7. Use the body to explain rationale 64

Contribution done:
Reflection Time!

• Your own activities:
• What could you have done better?
• Who did you interact with?
• What did you learn?

• The project’s processes and architecture:
• Did the processes in place help the project achieve its objectives efficiently?
• Was there friction? What could be improved?
• Who would you need to convince to make this happen?

Im
ag

e
cr

ed
it:

 w
ik

ip
ed

ia

65

66

67

Further Resources

• How to Contribute to Open Source
https://opensource.guide/how-to-contribute/
• The Beginner’s Guide to Open Source

https://blog.newrelic.com/tag/open-source-best-practices
• How to Write a Git Commit Message

https://chris.beams.io/posts/git-commit/
• Diomidis Spinellis. Why computing students should contribute to

open source software projects. CACM 64(7):36-38, July 2021.
https://dl.acm.org/doi/10.1145/3437254

68

https://opensource.guide/how-to-contribute/
https://blog.newrelic.com/tag/open-source-best-practices
https://chris.beams.io/posts/git-commit/
https://chris.beams.io/posts/git-commit/
https://dl.acm.org/doi/10.1145/3437254

