
17:35

IN4315: Software Architecture

Architecting for Scalability
Prof. Diomidis Spinellis

D.Spinellis@tudelft.nl

Based on material by Prof. Cesare Pautasso

cesare.pautasso@usi.ch

4http://www.spinellis.gr/

http://www.pautasso.info/

powered by

https://www.spinellis.gr/
http://www.pautasso.info/
http://asq.inf.usi.ch/

17:35

Contents
• Scalability: Workloads and Resources

• Scale up or Scale out?

• Scaling Dimensions: Number of Clients (Workload), Input Size,
State Size, Number of Dependencies

• Location Transparency: Directory and Dependency Injection

• Scalability Patterns: Scatter/Gather, Master/Worker, Load
Balancing, and Sharding

powered by

http://asq.inf.usi.ch/

17:35

Will it scale?Will it scale?

powered by

http://asq.inf.usi.ch/

17:35

Scalability and Workload

Workload

Response
Time

Workload

Throughput
(req/s)

Workload = traffic, number of clients or their number of concurrent
requests

Ideal system: response time not affected by the workload;
throughput grows proportionally to the workload

Real systems will show this behavior up to their capacity limit

powered by

http://asq.inf.usi.ch/

17:35

Scalability and Workload: Centralized

Workload

Response
Time

Workload

Response
Time

 Many 1

powered by

http://asq.inf.usi.ch/

17:35

How to scale?How to scale?

powered by

Done

http://asq.inf.usi.ch/

17:35

How to scale?
�. Work faster: better algorithms, €€€, Moore's Law

�. Work less: approximations, caching, client offloading

�. Work later: queuing

�. Get help: …

powered by

http://asq.inf.usi.ch/

17:35

Scalability and Resources: Decentralized

Resources

Speedup

Resources

Speedup

 Many1
powered by

http://asq.inf.usi.ch/

17:35

Scalability and Resources

Resources

Response
Time

Resources

Speedup

For the same workload, will performance improve by adding more
resources?

Ideal system: linear speedup with infinite resources

Real systems will only benefit up to a limited amount of resources

powered by

http://asq.inf.usi.ch/

17:35

Centralized or Decentralized?
Centralized Decentralized

Client/Server Peer to Peer Single Point of
Failure Hot Spot

Consistent Bottleneck Churn Partial Failure

powered by

Done

http://asq.inf.usi.ch/

17:35

Scalability at Scale

powered by

http://asq.inf.usi.ch/

17:35

Scale Up or Scale Out?
Scale Up Scale Out

powered by

Done

http://asq.inf.usi.ch/

17:35

Scaling Dimensions

Number of

Clients
State Size

Input Size

Number of

Dependencies

powered by

http://asq.inf.usi.ch/

17:35

Scalability Patterns
Component Dependencies Directory

Dependency Injection

Clients (Workload) Load Balancing

Input Size Master/Worker
Scatter/Gather

State Size Sharding

powered by

http://asq.inf.usi.ch/

17:35

Directory

use a directory to find interface endpoints based on
abstract descriptions

Clients avoid hard-coding knowledge about required interfaces as they
lookup their dependencies through a directory which knows how and
where to find them

How to facilitate location transparency?

powered by

http://asq.inf.usi.ch/

17:35

Directory
Client Interface

Clients use the Directory to lookup published interfaces
descriptions that will enable them to perform the actual
invocation of the component they depend on

Directory

Interface
Description 1. Register

2. Lookup

3. Invoke

powered by

http://asq.inf.usi.ch/

17:35

Dependency Injection

use a container which updates components with
bindings to their dependencies

Clients avoid hard-coding knowledge about required interfaces as they
expose a mechanism (setter or constructor) so that they can be
configured with the necessary bindings

How to facilitate location transparency?

powered by

http://asq.inf.usi.ch/

17:35

Dependency Injection
Interface

As components are deployed in the container they are
updated with bindings to the interfaces they require

Container

Interface
Description 0. Registe

2. Configure

3. Invoke

Client

1. Get Dependencies

powered by

http://asq.inf.usi.ch/

17:35

Dependency Injection

• Used to design architectures that follow the inversion of control
principle:

• “don't call us, we'll call you”, Hollywood Principle

• Components are passively configured (as opposed to actively
looking up interfaces) to satisfy their dependencies:

• Components should depend on required interfaces so that
they are decoupled from the actual component
implementations (which may be changed anytime)

powered by

http://asq.inf.usi.ch/

17:35

Dependency Injection

• Flexibility:

• Systems are a loosely coupled collection of components that
are externally connected and configured

• Component bindings can be reconfigured at any time
(multiple times)

• Testability:

• Easy to switch components with mockups

powered by

http://asq.inf.usi.ch/

17:35

Scatter/Gather

Broadcast the same request and aggregate the replies

Send the same request message to all recipients, wait for all (or some)
answers and aggregate them into a single reply message

How to compose many equivalent interfaces?

powered by

http://asq.inf.usi.ch/

17:35

Scatter/Gather

Client AScatter/Scatter/
GatherGather B C

Broadcast
Request

Aggregate
Results

Example:

• Contact N airlines simultaneously for price quotes

• Buy ticket from either airline if price <= 200 CHF

• Buy the cheapest ticket if price > 200 CHF

• Make the decision within 2 minutes
powered by

http://asq.inf.usi.ch/

17:35

Scatter/Gather

Which components should be involved?

• The recipients are kept hidden from the client
They can be dynamically discovered using subscriptions or
directory registrations

• The recipients are known a priori by the client
The request includes a distribution list with the targeted client
addresses

powered by

http://asq.inf.usi.ch/

17:35

Scatter/Gather

How to aggregate the responses?

• Send all (packaged into one message)

• Send one, computed using some aggregation function (e.g.,
average)

• Send the best one, picked with some comparison function

• Send the majority version (in case of discrepancy)

powered by

http://asq.inf.usi.ch/

17:35

Scatter/Gather

Synchronization strategies

• When to send the aggregated response?

• Wait for all messages

• Wait for some messages within a certain time window

• Wait for the first N out of M messages (N < M)

• Return fastest acceptable reply

• Warning: the response-time of each component may vary and
the response-time of the scatter/gather is the slowest of all
component responses

powered by

http://asq.inf.usi.ch/

17:35

Master/Worker

split a large job into smaller independent partitions
which can be processed in parallel

The master divides the work among a pool of workers and gathers the
results once they arrive

Synonyms: Master/Slave, Divide-and-Conquer

How speed up processing large amounts of input data?

powered by

http://asq.inf.usi.ch/

17:35

Master/Worker

Client PartitionMasterMaster Worker A Worker B

Assign to
Workers

Merge
Results

Example:

• Matrix Multiplication (compute each row independently)

• Movie Rendering (compute each picture frame independently)

• (volunteer computing)Seti@home

powered by

https://setiathome.berkeley.edu/cpu_list.php
http://asq.inf.usi.ch/

17:35

Master/Worker

Master Responsibilities

• Transparency: Clients should not know that the master delegates
its task to a set of workers

• Partitioning strategies: Uniform, Adaptive (based on available
worker resources), Static/Dynamic

• Fault Tolerance: if a worker fails, resend its partition to another
one

• Computational Accuracy: scatter the same partition to multiple
workers and compare their results to detect inaccuracies
(assuming workers are deterministic)

• Master is application independent
powered by

http://asq.inf.usi.ch/

17:35

Master/Worker

Worker Responsibilities

• Each worker runs its own parallel thread of control and may be
distributed across the network

• Worker churn: they may join and leave the system at any time
(may even fail)

• Workers do not usually exchange any information among
themselves

• Workers should be independent from the algorithm used to
partition the work

• Workers are application domain-specific

powered by

http://asq.inf.usi.ch/

17:35

Load Balancing

deploy many replicated instances of stateless
components on multiple machines

The Load Balancer routes requests among a pool of workers, which answer
directly to the clients

How to speed up processing multiple requests of many
clients?

powered by

http://asq.inf.usi.ch/

17:35

Load Balancing

Clients DirectoryLoadLoad
BalancerBalancer Worker A Worker B

Assign to
Worker

powered by

http://asq.inf.usi.ch/

17:35

Load Balancing

Strategies

• Round Robin

• Random

• Random Robin

• First Available

• Nearest

Location

• Server (transparent from client)

• Client (aware of choice between
alternative workers)

• Directory (e.g., DNS)

Layer

• Hardware (network device)

• Software (OS, or user-level)

powered by

http://asq.inf.usi.ch/

17:35

Load Balancing

Variants

• Stateless: every request from any client goes to any worker
(which must be stateless)

• Session-based: requests from the same client always go to the
same worker (which could be stateful)

• Elastic: the pool of workers is dynamically resized based on the
amount of traffic

powered by

http://asq.inf.usi.ch/

17:35

Sharding

partition the data across multiple databases

Route the queries to the corresponding data partition ensuring each
partition remains independent and balanced

How to scale beyond the capacity of a single database?

powered by

http://asq.inf.usi.ch/

17:36

Sharding

Shard AShard AComponentComponent Query RouterQuery Router

queryquery

queryqueryshard_keyshard_key

Partitioned Dataset

shard_keyshard_key

Shard BShard B

Common Dataset

SharedShared

queryquery

queryquery

Queries are directed to the corresponding shard (partition)

Queries should not involve more than one independent shard,
even if they may use some shared non-sharded dataset that may
need to be replicated on each shard powered by

http://asq.inf.usi.ch/

17:36

Sharding

• Two goals:

• scale capacity (storage size, bandwidth, concurrent
transactions)

• balance query workload (avoid hotspots)

• What to shard?

• Large data collections (they do not fit)

• Hot spots (increase throughput of queries targeting a subset
of the data)

powered by

http://asq.inf.usi.ch/

17:36

Sharding

Computing the Shard Key

• Key Ranges

• Geo-spatial (country shards)

• Time Range (year, month, day)

• Hash Partitioning

• Modulo (Number of Shards)

Usually assumes a fixed and static number of shards

powered by

http://asq.inf.usi.ch/

17:36

Sharding

Looking up the Shard Key

• Business domain-driven (customer/tenant id)

• Helps to keep data balanced

• Requires to maintan a master index (i.e., a directory for shards, a
ZooKeeper)

powered by

http://asq.inf.usi.ch/

17:36

Sharding

• Changing the number of shards or the sharding strategy may
require an expensive and complex repartitioning operation

• Transactions should only involve one shard (some shared data
may need to be replicated on each shard)

• Sharding was originally implemented outside the data layer,
sometime as part of the application logic. Some databases are
starting to offer native sharding support

powered by

http://asq.inf.usi.ch/

17:36

Sharding

Different systems use different terms to name data partitioning for
scalability

Shard MongoDB, Elasticsearch, SolrCloud
Region HBase
Tablet Bigtable
vnode Cassandra, Riak
vbucket Couchbase

powered by

http://asq.inf.usi.ch/

17:36

References
• Martin L. Abbott, Michael T. Fisher, The Art of Scalability, Pearson, 2015

• Gregor Hohpe and Bobby Woolf, , Addison-Wesley, October
2003, ISBN 0321200683

• Martin Kleppmann, Designing Data-Intensive Applications: The Big Ideas Behind Reliable,
Scalable and Maintainable Systems, O' Reilly, 2017, ISBN 978-1-449-37332-0

Enterprise Integration Patterns

powered by

https://www.enterpriseintegrationpatterns.com/
http://asq.inf.usi.ch/

