
14:03

IN4315: Software Architecture

Architecting for Quality
Prof. Diomidis Spinellis

D.Spinellis@tudelft.nl

Based on material by Prof. Cesare Pautasso

cesare.pautasso@usi.ch

3http://www.spinellis.gr/

http://www.pautasso.info/

powered by

https://www.spinellis.gr/
http://www.pautasso.info/
http://asq.inf.usi.ch/

14:03

Contents
• Internal vs. External Quality

• Meta-quality

• Quality attributes along the software lifecycle: design, operation,
failure, attack, change and long-term

powered by

http://asq.inf.usi.ch/

14:03

Quality
RequiredDefective Desired Ideal

powered by

http://asq.inf.usi.ch/

14:03

Types of Requirements
Functional Shall do It works!
Non-Functional Shall be It works/evolves well

powered by

http://asq.inf.usi.ch/

14:03

Functional
• Correctness

• Completeness

• Compliance (e.g., Ethical Implications)

Non-Functional …
• Internal vs. External

• Static vs. Dynamic

powered by

http://asq.inf.usi.ch/

14:03

Internal vs. External
External qualities concern the fitness for purpose of the software
product, whether it satisfies stakeholder concerns. They are
affected by the deployment environment.

Internal qualities describe the developer's perception of the state
of the software project and change during the design and
development process.

powered by

http://asq.inf.usi.ch/

14:03

Static vs. Dynamic
Static qualities concern structural properties of the system that
can be assessed before it is deployed in production

Dynamic qualities describe the system's behavior:

• during normal operation

• in the presence of failures

• under attack

• responding to change

• in the long term

powered by

http://asq.inf.usi.ch/

14:03

Meta-Qualities
• Observability

• Measurability

• Repeatability (Jitter)

• Predictability

• Auditability

• Accountability

• Testability

powered by

http://asq.inf.usi.ch/

14:03

Quality Attributes

Re
us

ab
ili

ty

Se
cu

rit
y

Av
ai

la
bi

lit
y

Co
m

pa
tib

ili
ty

Po
rt

ab
ili

ty

Sc
al

ab
ili

ty
Pe

rf
or

m
an

ce

El
as

tic
ity

Af
fo

rd
ab

ili
ty

Ti
m

e
to

 M
ar

ke
t

Fe
as

ib
ili

ty

Fu
nc

tio
na

lit
y

Co
rr

ec
tn

es
s

Co
m

pl
ia

nc
e

Co
m

pl
et

en
es

s

Et
hi

cs

St
ab

ili
ty

In
te

ro
pe

ra
bi

lit
y

Us
ab

ili
ty

Ea
se

 o
f s

up
po

rt
Se

rv
ic

ea
bi

lit
y

Ac
ce

ss
ib

ili
ty

De
pe

nd
ab

ili
ty

Cu
st

om
iza

bi
lit

y
Co

nfi
gu

ra
bi

lit
y

M
od

ifi
ab

ili
ty

Re
co

ve
ra

bi
lit

y

Su
rv

iv
ab

ili
ty

Re
lia

bi
lit

y

Du
ra

bi
lit

y

Sa
fe

ty

Co
nfi

de
nt

ia
lit

y
In

te
gr

ity

Pr
iv

ac
y

De
fe

ns
ib

ili
ty

M
od

ul
ar

ity

Co
ns

is
te

nc
y

Si
m

pl
ic

ity
Cl

ar
ity

O
pe

ra
tio

n

De
si

gn

Fa
ilu

re

At
ta

ck

Ch
an

ge

Co
m

po
sa

bi
lit

y Re
si

lie
nc

e
Ad

ap
ta

bi
lit

y
Ex

te
ns

ib
ili

ty

In
te

rn
alSt

ak
eh

ol
de

rs Ex
te

rn
al

Vi
si

bi
lit

y Ea
se

 o
f I

nt
eg

ra
tio

n

Fl
ex

ib
ili

tyDe
pl

oy
ab

ili
ty

Lo
ng

-t
er

m

Au
th

en
tic

at
io

n
Au

th
or

iza
tio

n

M
ai

nt
ai

na
bi

lit
y

No
n-

Re
pu

di
at

io
n

Ev
ol

va
bi

lit
y

M
an

ag
ea

bi
lit

yAe
st

he
tic

s

Di
sp

os
ab

ili
ty

Ob
se

rv
ab

ili
ty

M
ea

su
ra

bi
lit

y
Re

pe
at

ab
ili

ty

Pr
ed

ic
ta

bi
lit

y
Au

di
ta

bi
lit

y
Ac

co
un

ta
bi

lit
y

Te
st

ab
ili

ty

M
et

a

powered by

http://asq.inf.usi.ch/

14:03

Quality Attributes

Affordability
Time to Market

Feasibility

Functionality
Correctness

Compliance
Completeness

Ethics

Consistency
Design

Internal
Stakeholders

External
Observability

Measurability

Repeatability

Predictability

Auditability

Accountability

Testability

Meta

powered by

http://asq.inf.usi.ch/

14:03

Quality Attributes

Reusability

Affordability
Time to Market

Feasibility

Functionality
Correctness

Compliance
Completeness

Ethics

Stability
Modularity

Consistency
Simplicity
Clarity

Design

Composability

Internal External

Deployability

Aesthetics

Measurability

Repeatability

Predictability

Auditability

Accountability

Testability

powered by

http://asq.inf.usi.ch/

14:03

Quality Attributes

Reusability

Scalability
Performance

Stability

Usability

Ease of suppo
Serviceability

Accessibility

Dependability

Recoverability
Reliability

Safety

Modularity

Consistency
Simplicity
Clarity

Operation

Design

Failure

Composability

Visibility

Deployability

Manageability

Aesthetics

powered by

http://asq.inf.usi.ch/

14:03

Quality Attributes

Security
Availability

Scalability
Performance

y

Ease of suppo
Serviceability

Accessibility

Dependability

Recoverability

S r i abilit

Reliability

Safety

Confidentiality
Integrity

Defensibility

Operation

Failure

Attack

Visibility

Authentication
Authorization
Non-Repudiat

Manageability

powered by

http://asq.inf.usi.ch/

14:03

Quality Attributes

Compatibility
Portability

Elasticity

Interoperability

Customizability
ConfigurabilityModifiability

Survivability

Durability

Privacy

Change
Resilience

Adaptability
Extensibility

Ease of Integration

Flexibility

Authorization

Maintainability

Non-Repudiat

Evolvability powered by

http://asq.inf.usi.ch/

14:03

DesignDesign

powered by

http://asq.inf.usi.ch/

14:03

Design Qualities
• Feasibility

• Consistency

• Simplicity

• Clarity

• Aesthetics

• Stability

• Modularity

• Reusability

• Composability

• Deployability powered by

http://asq.inf.usi.ch/

14:03

Feasibility
What's the likelihood of success for your new project?

• Affordability

• Time to Market

powered by

http://asq.inf.usi.ch/

14:03

Affordability
Are there enough resources to complete the project?

• Money

• Hardware

• People (Competent, Motivated)

• Time

• Slack

powered by

http://asq.inf.usi.ch/

14:03

Slack
Are there enough free resources (just in case)?

• Deal with unexpected events

• Breathing space to recharge

• Planning, backlog grooming

• Keep track of the big picture

• Reflect and refactor

• Pay back technical debt

• Learn and experiment

powered by

http://asq.inf.usi.ch/

14:03

Time to Market
How soon can we start learning from our users?

Slow Fast
Build from scratch Reuse and assemble

Perfect product Minimum viable product (MVP)

Design by committee Dedicated designer

powered by

http://asq.inf.usi.ch/

14:03

Modularity
Is there a structural decomposition of the architecture?

Prerequisite for: Code Reuse, Separate Compilation,
Incremental Build, Distributed Deployment,
Separation of Concerns, Dependency Management, Parallel Development in Larger Teams

Programming Languages with modules:
Ada, Algol, COBOL, Dart, Erlang, Fortran, Go, Haskell, Java, Modula, Oberon, Objective-C, Perl,
Python, Ruby

Programming languages without modules:

C, C++, JavaScript

Modularisation is a design issue, not a language issue (David Parnas)

powered by

http://asq.inf.usi.ch/

14:03

Reusability
Can we use this software many times for different purposes?

• Reuse Mechanism: Fork (duplication) vs. Reference
(dependencies)

• Origin: Internal vs. External (Not Invented Here Syndrome)

• Scope: General-purpose vs. Domain-specific

• Pre-requisites for reuse: trusted "quality" components,
standardized and documented interfaces, marketplaces

It is often easier to write an incorrect program than to understand how to reuse a
correct one (Will Tracz, 1987)

powered by

http://asq.inf.usi.ch/

14:03

Design Consistency
What's the design's conceptual integrity and coherence?

Understanding a part helps to understand the whole

Avoid unexpected surprises (POLA):

• Pick a naming convention

• Follow the architectural style constraints

• Document architectural decisions

Know the rules (and when to break them)
It is better to have a system reflect one set of design ideas, than to have one that

contains many good but independent and uncoordinated ideas (Fred Brooks, 1995)

powered by

http://asq.inf.usi.ch/

14:03

Simplicity
What's the complexity of the design?

• A simple solution for a complex problem

• One general solution vs. many specific solutions:

• Lack of duplication (DRY)

• Minimal variability

• Conciseness

• Resist changes that compromise simplicity

• Refactor to simplify
As simple as possible, but not simpler (Albert Einstein)

powered by

http://asq.inf.usi.ch/

14:03

Complexity
What is the primary source of complexity?

•• The number of components of the architecture

•• The amount of connections between the components

powered by

Done

http://asq.inf.usi.ch/

14:03

Clarity
Is the design easy to understand?

A clear architecture distills the most essential aspects into simple
primitive elements that can be combined to solve the important
problems of the system

Freedom from ambiguity and irrelevant details

Definitive, precise, explicit and undisputed decisions

Opposite: Clutter, Confusion, Obscurity

powered by

http://asq.inf.usi.ch/

14:03

Stability
How likely to change is your design?

Unstable Stable
Prototype Product

Implementation Interface

Depends on many
components

Many components depend on it

Likely to break clients Platform to build upon

Experimental spike, throw-
away code

Worthy of further investment: building, testing,
documenting

powered by

http://asq.inf.usi.ch/

14:04

Composability
How easy is it to assemble the architecture from its constituent parts?

• Assuming all components are ready, putting them together is
fast, cheap and easy

• Cost(Composition) < Cost(Components)

• Components can be easily recomposed in different ways

powered by

http://asq.inf.usi.ch/

14:04

Deployability
How difficult is it to deploy the system in production?

Hard Easy
Manual Release Automated Release

Scheduled Updates Continuous Updates

Unplanned Downtime Planned or No Downtime

Wait for Dependencies No synchronization

Changes cannot be undone Rollback Possible

powered by

http://asq.inf.usi.ch/

14:04

Normal OperationNormal Operation

powered by

http://asq.inf.usi.ch/

14:04

Normal Operation
• Performance

• Scalability

• Capacity

• Usability

• Ease of Support

• Serviceability

• Visibility

powered by

http://asq.inf.usi.ch/

14:04

Performance
How timely are the external interactions of the system?

• Latency

• Communication/Computation Delay

• User-Perceived: First Response vs. Completion Time

• Throughput

• Computation: Number of Requests/Time

• Communication: Limited by Bandwidth (Data/Time)

powered by

http://asq.inf.usi.ch/

14:04

Scalability
Is the performance guaranteed with an increasing workload?

• Architecture designed for growth:

• client requests (throughput)

• number of users (concurrency)

• amount of data (input/output)

• number of nodes (network size)

• number of software components (system size)
by taking advantage of additional resources

• Scalability is limited by the maximum capacity of the system

• Software systems are expected to handle workload variations of 3-10 orders of magnitude
over short/large periods

powered by

http://asq.inf.usi.ch/

14:04

Capacity
How much work can the system perform?

• Capacity: Maximum achievable throughput without violating
latency requirements

• Utilization: Percentage of time a system is busy

• Saturation: Full utilization, no spare capacity

• Overload: Beyond saturation, performance degradation,
instability

• Ensure that there is always some spare capacity

powered by

http://asq.inf.usi.ch/

14:04

Measuring Normal Operation Qualities

Results are displayed after users submit their input

The system can process messages sent in

After of initial training, users are already productive

Last Friday the workload reached

1 second 1M concurrent
clients

1000
requests/second 1 hour

powered by

Done

http://asq.inf.usi.ch/

14:04

Usability
Is the user interface intuitive and convenient to use?

• Learnability (first time users)

• Memorability (returning users)

• Efficiency (expert users)

• Satisfaction (all users)

• Accessibility

• Internationalization

powered by

http://asq.inf.usi.ch/

14:04

Ease of Support
Can users be effectively helped in case of problems?

Hard Easy
Cryptic Error Messages Self-Correcting Errors

Heisen-bugs Reproducible Bugs

Unknown Configuration Remotely Visible Configuration

Configuration No configuration

No Error Logs Stack Traces in Debug Logs

User in the Loop Remote Screen; telemetry

powered by

http://asq.inf.usi.ch/

14:04

Serviceability
How convenient is the ordinary maintenance of the system?

Hard Easy
Complete Operational Stop Service Running System

Reboot to upgrade Transparent upgrade

Install Wizard Unattended Installation Script

Restart to apply configuration change Hot/live configuration

Manual Bug Reports Automatic Crash Report

powered by

http://asq.inf.usi.ch/

14:04

Visibility
Is it possible to monitor runtime events and interactions?

To which extent the system behavior and internal state can be
observed during operation?

Are there logs to debug, detect errors or audit the system in
production?

Is the system self-aware?

Process Visibility: can the progress of the project be measured and
tracked?

We see in order to move; we move in order to see. (William Gibson)

powered by

http://asq.inf.usi.ch/

14:04

Failure ModeFailure Mode

powered by

http://asq.inf.usi.ch/

14:04

Dependability Qualities
• Availability

• Reliability

• Recoverability

• Safety

• Security

powered by

http://asq.inf.usi.ch/

14:04

Reliability
How long can the system keep running?

• MTBF - Mean Time Between Failures

• MTTF - Mean Time To Failure

Recoverability
How long does it take to repair the system?

• MTTR - Mean Time to Recovery

• MTTR - Mean Time to Repair

• MTTR - Mean Time to Respond

powered by

http://asq.inf.usi.ch/

14:04

Availability
How likely is it that the system is functioning correctly?

Availability and Reliability

• Availability = MTTF / (MTTF + MTTR)
Availability and Downtime

• Availability = (Ttotal - Tdown) / Ttotal
Availability Downtime (1 Year)

99% 3.65 days
99.9% 8.76 hours

99.99% 53 minutes
99.999% 5.26 minutes

99.9999% 31.5 seconds

powered by

http://asq.inf.usi.ch/

14:04

Measuring Availability and Reliability

The service level agreement states up to downtime per
, an availability of

After we call support, they need to be there within

Rebooting the server takes

The uptime of our oldest server has reached

1 month 30 minutes 5 seconds 1 hour 4 years 99.861%

powered by

Done

http://asq.inf.usi.ch/

14:04

Safe

Robust

Secure

Is damage prevented during
erroneous use outside the
operating range?

Is damage prevented during use
within the operating range?

Is damage prevented during
intentional/hostile use outside the
operating range?

B. M
eyer

powered by

http://asq.inf.usi.ch/

14:04

Under AttackUnder Attack

powered by

http://asq.inf.usi.ch/

14:04

Security
• Authentication

How to confirm the user's identity?

• Authorization
How to selectively restrict access to the system?

• Confidentiality
How to avoid unauthorized information disclosure?

• Integrity
How to protect data from tampering?

• Availability
How to withstand denial of service attacks?

powered by

http://asq.inf.usi.ch/

14:04

Defensibility
Is the system protected from attacks?

Survivability
Does the system survive the mission?

powered by

http://asq.inf.usi.ch/

14:04

Privacy
How to keep personal information secret?

Privacy Good Poor
Default Opt-in Opt-out

Purpose Specific, explicit Generic, unknown

Tracking None Third-party Fingerprinting

Personal identification Data anonymization Data re-identification

Retention Delete after use Forever

Breach Prompt Notification Silent

powered by

http://asq.inf.usi.ch/

14:04

ChangeChange

powered by

http://asq.inf.usi.ch/

14:04

Change Qualities
What changes are expected in the future?

No Change: put it in hardware

Software is expected to change

Versioning

powered by

http://asq.inf.usi.ch/

14:04

Flexibility
• Configurability

• Customizability

• Modifiability

• Extensibility

• Resilience

• Adaptability

• Elasticity

powered by

http://asq.inf.usi.ch/

14:04

Configurability
Can architectural decisions be delayed until after deployment?

• Component Activation, Instantiation, Placement, Binding

• Resource Allocation

• Feature Toggle
Poor Good Better
Undocumented configuration
options

Documented
configuration options

Sensible defaults
provided

Hard-coded parameters
(rebuild to change)

Startup parameters
(restart to change)

Live parameters
(instant change)

powered by

http://asq.inf.usi.ch/

14:04

Customizability
Can the architecture be specialized to address the needs of individual customers?

• One size Fits All

• Product Line

• White Labeling

• UI Theming, Skin

• Configurability, Composability

powered by

http://asq.inf.usi.ch/

14:04

Change Duration
• Temporary: Resilience

Can the architecture return to the original design after the change is
reverted?

• Permanent: Adaptability
Can the architecture evolve to adapt to the changed requirements?

powered by

http://asq.inf.usi.ch/

14:04

Adapt to Changing Requirements
• New Feature: Extensibility

Can functionality be added to the system?

• Existing Feature: Modifiability
Can already implemented functionality be changed?

Can functionality be removed from the system?

powered by

http://asq.inf.usi.ch/

14:04

Elasticity
Can workload changes be absorbed by dynamically re-allocating resources?

• Assumption: Scalability + Pay as you go

• Cost(SLA Violation) >> Cost(Extra Resource)

• Example: Cloud Computing

powered by

http://asq.inf.usi.ch/

14:04

Elasticity
Can workload changes be absorbed by dynamically re-allocating resources?

Workload

Static Resource AllocationStatic Resource Allocation

Workload

Static Resource AllocationStatic Resource Allocation

Wasted CapacityWasted Capacity

Wasted CapacityWasted Capacity

powered by

http://asq.inf.usi.ch/

14:04

Elasticity
Can workload changes be absorbed by dynamically re-allocating resources?

Workload

Static Resource AllocationStatic Resource Allocation

Workload

Static Resource AllocationStatic Resource Allocation
OverloadOverload

Wasted CapacityWasted Capacity

powered by

http://asq.inf.usi.ch/

14:04

Elasticity
Can workload changes be absorbed by dynamically re-allocating resources?

Workload

Static Resource AllocationStatic Resource Allocation

Workload

Ideal Elastic Resource AllocationIdeal Elastic Resource Allocation

OverloadOverload

powered by

http://asq.inf.usi.ch/

14:04

Elasticity
Can workload changes be absorbed by dynamically re-allocating resources?

Workload

Ideal Elastic Resource AllocationIdeal Elastic Resource Allocation

Workload

Real Elastic Resource AllocationReal Elastic Resource Allocation

powered by

http://asq.inf.usi.ch/

14:04

Compatibility
Does X work together with Y?

• Interfaces

• Protocols and Data Formats (Interoperability)

• Platforms (Portability)

• Source vs. Binary

• (Backwards and Forwards Compatibility)Semantic Versioning

powered by

https://semver.org/
http://asq.inf.usi.ch/

14:04

Portability
Can the software run on multiple execution platforms without
modification?

• Write Once, Compile/Run/Test Anywhere

• Cost(porting) << Cost(rewriting)

• Platform-Independent vs. Native Code

• Deployment: Universal Binaries

• Runtime: OS Layer, Virtual Machine Layer, Hardware Abstraction
Layer

powered by

http://asq.inf.usi.ch/

14:04

Interoperability
Can two systems exchange information to successfully interact?

• Abstraction Levels:

• Payload Syntax

• Message Semantics

• Protocols/Conversations

• Content Type Negotiation

• Standardization

• Mediation

powered by

http://asq.inf.usi.ch/

14:04

Ease of Integration
How expensive is it to integrate our system with others?

Expensive Easy
Hub and Spoke (2 systems) Point to Point (2 systems)

Point to Point (N systems) Hub and Spoke (N systems)

No API Standard Interface

Custom Binary Data Standard Text, XML, JSON Data

Air gap No Firewall

Batched, periodic Continuous, real-time

powered by

http://asq.inf.usi.ch/

14:04

Long TermLong Term

powered by

http://asq.inf.usi.ch/

14:04

Long Term Qualities
• Durability

• Maintainability

• Sustainability

powered by

http://asq.inf.usi.ch/

14:04

Durability
How permanent is the data?

• Persistence Layer (DB, Container, OS)

• Checkpoint and Restore

• Backup and Disaster Recovery

• Long-term Digital Preservation

powered by

http://asq.inf.usi.ch/

14:04

Maintainability
How to deal with software entropy?

• Change is inevitable

• Keep the quality level over time

• Adaptive, perfective, corrective, preventive maintenance

• Re-engineer, reverse engineer or retire legacy systems
If you never kill anything, you will live among zombies (Gregor Hohpe, 2015)

powered by

http://asq.inf.usi.ch/

14:04

Maintainability
Adaptive Perfective Corrective Preventive

Fail
Over to
Backup
Data
Center

Bug Fix

Year
2038
Time
Overflow

New
Feature

Comply
with
New
Law

Refactor Write
Documentation

Upgrade
Dependencies

Optimize
Performance

powered by

Done

http://asq.inf.usi.ch/

14:04

Types of Maintenance

Adaptive Deal with external "evolutionary" pressure

(avoid quality gets worse over time)

Perfective Improve external qualities

Corrective Remove defects (ensure acceptable, good
enough quality)

Preventive Improve internal qualities

powered by

http://asq.inf.usi.ch/

14:04

Sustainability
• Technical

How to avoid your software becomes obsolete in the long term?

• Economic
How to ensure your software development organization does not go bankrupt in

the long term?

• Growth
How to bootstrap the growth of your startup?

powered by

http://asq.inf.usi.ch/

14:04

References

• George Fairbanks, Just Enough Software Architecture: A Risk Driven Approach, M&B 2010

• Douglas McIlroy, Mass produced software components, NATO Software Engineering
Conference, Garmisch, Germany, October 1968

• Will Tracz, Confessions of a Used Program Salesman, Addison-Wesley, 1995

• Frederick Brooks, The mythical man-month: essays on software engineering, Addison-Wesley,
1975

• Tom De Marco, Slack, Getting Past Burnout, Busywork, and the Myth of Total Efficiency,
Broadway Books, 2002

• Diomidis Spinellis, Georgios Gousios, Beautiful Architecture: Leading Thinkers Reveal the
Hidden Beauty in Software Design, O'Reilly, 2009

• Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, Carl E. Landwehr,
Basic Concepts and
Taxonomy of Dependable and Secure Computing. IEEE Trans. Dependable Sec. Comput. 1(1):
11-33 (2004)

• Ken Thompson, , Comm. ACM, 27(8): 761-763, August 1984Reflections on trusting trust

powered by

https://doi.org/10.1145/358198.358210
http://asq.inf.usi.ch/

