TU Delft IN4315;
Software Architecture

Lecture 2:
The Vision (E1) and the System (E2)

Arie van Deursen



Defining Software Architecture

1. How would you define software architecture? —

2. How does your definition of software architecture relate to
what an architect does?

3. Can you name examples of well known systems with great or
influential architectures?

Please enter your thoughts in the chat!




e ay gz
T .
,"“' ‘
oy 4 >

“The Architecture of Open Source Applicatic;1s“

Volume |i: Structure, Scale, and a Few More Fearless Hacks

/" Beautiful
/ Architecture

Leading TPwnruker‘é;ﬁRe>»'e;al the Hidden Beallly in Software Design

Al

Unix, Git, Eclipse, Emacs, LLVM, REST, Selenium, JUnit, ...

Edited by Amy Brown & Greg Wilson

OQREILLY" Edited'BDiomidis Spinellis & Georgios Gousios




The Architecture of a System (IEEE):

* The set of fundamental concepts or properties
* of the system in its environment,
* embodied in its elements and relationships,

e and the principles of its design and evolution.



The Architecture of a System (Roy Fielding)

* A configuration of architectural elements
(components, connectors, and data)

e constrained in their relationships

e in order to achieve a desired set of
architectural properties.

Constraints: Focus on what is and is not allowed



Architecture Defined

Architecture represents
the significant design decisions
that shape a system
where significant is measured
by cost of change

(Grady Booch, March 2006)

Grady Booch, ACM/IEEE/IBM Fellow



Basic Definition

o A software system'’s architecture is the set of
principal design decisions made about the system.

Architecture = {Principal Design Decisions}

o |t is the blueprint for a software system’s shared understanding,
necessary for its construction and evolution

‘e 13 J0jAe] "N



“Principal Design Decisions”

Aspects:

* Structure

* Behavior

* Interaction

* Deployment

* User Interface

* Implementation

Principal
* Needed to meet (quality) goals of stakeholders

* Shape (likely) future design decisions
* “already taken” to make life easier
* “simplify”: offering guidance on future decisions
* “limit”: In retrospect unwise, but hard to change.

Software
Architecture

Ch.3
Cesare Pautasso



Decision Making Phases

Diverge : brainstorm/generate many
possible alternatives to solve a given design issue

O
O

W

Converge : prune/prioritize
pick one alternative

Design issue Design alternatives Design decision, with rationale




Software
Architecture

Descriptive or Prescriptive? h3

* Prescriptive:
e Decisions of the future — architecture as it should be
* |dealized version of the past — architecture as it should have been

* Descriptive:
* Decisions of the past — architecture as it is
* Maybe complex due to repeated violations / short cuts
* May have to be “recovered” from actual system (architectural archeology)

* Erosion:
* Undermining of originally prescribed architecture



Essay 1: The Product in its Context

* What do we want?
* The guiding principles / product vision
* Key scenarios illustrating the usage Answering these questions

* Analysis of key domain concepts Olrtizszioogier;.

e What do we need from the outside world?

. This involves design
* The system context and external dependencies lieady

e Who do we want it for?
 Users and other stakeholders

* How good should it be?
e Key quality attributes



Shared Story = Product Vision

* Clear vision of what the product is and will do

e Simple, compelling, articulated, shared

* Comes with a credible roadmap towards this vision.

* Expressible in terms that are understandable to end users
* Driven / enabled by sound architectural foundations

* Co-production of product manager and architect



Our Mission

-is the leading destination for creativity—by giving a million creative artists the

short-form mobile video. Our

mission is to inspire creativity and

bring joy.

Our mission is to unlock the potential of human

opportunity to live off their art and billions of fans
the opportunity to enjoy and be inspired by it.

About

- is an open source driver
assistance system.- performs

the functions of Automated Lane
Centering and Adaptive Cruise Control
for over 85 supported car makes and
models.

Long before we knew that it would be called-we knew what we
wanted it to be. Instead of teaching the rest of the world
cryptography, we wanted to see if we could develop cryptography
that worked for the rest of the world. At the time, the industry
consensus was largely that encryption and cryptography would
remain unusable, but we startehwith the idea that private
communication could be simple.

13




Our Mission

TikTok is the leading destination for

short-form mobile video. Our

mission is to inspire creativity and

bring joy.

@ For the Record —

Our mission is to unlock the potential of human
creativity—by giving a million creative artists the
opportunity to live off their art and billions of fans
the opportunity to enjoy and be inspired by it.

About

openpilot is an open source driver
assistance system. openpilot performs
the functions of Automated Lane
Centering and Adaptive Cruise Control
for over 85 supported car makes and
models.

Signal Foundation

moxieO on 21 Feb 2018

Long before we knew that it would be called Signal, we knew what we
wanted it to be. Instead of teaching the rest of the world
cryptography, we wanted to see if we could develop cryptography
that worked for the rest of the world. At the time, the industry
consensus was largely that encryption and cryptography would
remain unusable, but we started Signal with the idea that private

communication could be simple.
14




The “Domain Model”

e Refutable truths about the real-
world

e Qutside your control

* Your system will be evaluated
against it

 Architecturally significant
requirements

* Problem domain description:
* Information (invariants,
navigation, snapshots)
* Functionality (use-case
scenarios, feature models)

* Define shared vocabulary and
understanding towards your
customer, domain expert

Software
Architecture

Ch. 4
Cesare Pautasso



Example Domain Model

Music songs are organized in albums

The same song can be authored by many artists

Listening to each song costs 0.99 CHF, but short samples can be
heard for free

e Songs can be downloaded and also live streamed

* Songs are stored in files of standard MP3 format



The
Ubiquitous

Technical
Jargon

Business

Jargon Language

DRSEEGAY

Tackling Complexity in the Heart of Software

—

Yet the most significant complexity of many applications is not technical. It is in the do-

main itself, the activity or business of the user. When this domain complexity is not
handled in the design, it won’t matter that the infrastructural technology is well con-

ceived. A successful design must systematically deal with this central aspect of the

software.

Foreword by Martin Fowler




Always design a thing by
considering it in its next larger
context — a chair in a room, a room
in a house, a house in an

environment, an environment in a
city plan.

— ELIEL SAARINEN

https://quotesondesign.com/eliel-saarinen/

18



Software
Architecture

System Context View

o ~
i g
Scope of the
% J// System Interface Design Model
Actor \ /
S
/
N 7~
\ i S
Existing Existing
System System

 Distinguish what needs to be built from what already exists and
define the dependencies and the integration points



System Context View

e User roles, personas - who do you expect will use the system?
Are the users all the same? How many users can share the
system at the same time?

« Dependencies - which external systems need to be integrated
with the system? are there some open API that let other
(unknown or known) systems interact with the system?



System Context View Example

provide (e
content for

listen
with

Yy

charge|customers

Payment
System




|

(End) Users

|

|

Business

|

Recognizing a System’s Stakeholders

* Video / music producers and consumers
* Advertisers
* Regulators (privacy, intellectual property)

* Marketing and sales
* Management

* |nvestors

{ Development & Operations }

* Developers
* Operations
* Testers

* Designers
* Architect



Stakeholders in Open Source?

Types of Stakeholders

* Developers, testers, reviewers,...

 End users, APl consumers

* Apache, Linux, Eclipse, ...
foundations

* Companies relying on open
source

* Companies selling open source

Finding Stakeholders

* Open documentation
* Issue tracking system
* Pull request discussions

e License



Software
Architecture

How Good Should the System be? g

Cost Functionality

Elasticity
Fase of support\\
Testability k
Usability
Performance //

Scalability

Compatibility
Time to Market

/ Reliability /Availability

Reci “eﬂCe/Mai ntainabl UW
Reusability :



Software
Architecture

Quality Attributes 2

 Desirable properties of a system (under construction)

 External: fitness for purpose / does it meet stakeholder needs

* Internal: fitness for engineering process / can devs work with it
* Internal attributes indirectly affect many external attributes

e Static: structural properties of the design / code
* Dynamic: run time properties of the system in action



A Catalogue of “ilities”

* Meta

* Functionality
* Design

* Operation

* Failure

* Attack

* Change

* Long-term

Measurability, auditability

Correctness, completeness

Modularity, reusability

Usability, performance, scalability

Recoverability, reliability, availability

Privacy, confidentia
Flexibility, extensibi

Maintainability, exp

ity, integrity
ity, configurability
ainability

Design

Operation

Failure

Attack

Change

Long-term

Stakeholders

Internal External
Functionality
Correctness
Completeness
Compliance
Ethics

Feasibility

Modularity

Reusability

Composability

Performance

Scalability
Dependability
Safety
Recoverability

Reliability

AvallaDility
Security

Privacy
Flexibility

Compatibility
Portability Interoperability
Ease of Integration

Evolvability

1ability daderstandabpilit
Sustainability




Managing “ility” tradeoffs

* Privacy vs usability

* Modularity vs time-to-market
* Availability vs configurability

* Extensibility vs integrity

* Performance vs interoperability
* Performance vs confidentiality

The architect needs to
understand which
attributes must be

optimized, and which

ones can be sacrificed




Right and Wrong in Software Architecture

.‘ ¥y Grady Booch 9 v

i)'/ @Grady_Booch

Every line of code has a moral and ethical implication.

28




Ethics

Well-founded standards of right and wrong
that prescribe what humans ought to do,

usually in terms of rights, obligations, benefits to society,
fairness, or specific virtues.

The continuous effort of studying
our own moral beliefs and our moral conduct,
and striving to ensure that we, and the institutions we help to shape,

live up to standards that are reasonable and solidly-based

https://www.scu.edu/ethics/ethics-resources/ethical-decision-making/what-is-ethics/



vw.acm.org

ACM Code of Ethics and Professional Conduct

Preamble

Computing professionals' actions change the world. To act responsibly, they
should reflect upon the wider impacts of their work, consistently supporting
the public good. The ACM Code of Ethics and Professional Conduct ("the
Code") expresses the conscience of the profession.

e

The Code is designed to inspire and guide the ethical conduct of all computing |
professionals, including current and aspiring practitioners, instructors,
students, influencers, and anyone who uses computing technology in an y

impactful way. Additionally, the Code serves as a basis for remediation when

violations occur. The Code includes principles formulated as statements of h
responsibility, based on the understanding that the public good is always the

primary consideration. Each principle is supplemented by guidelines, which )

provide explanations to assist computing professionals in understanding and
applying the principle.

Section 1 outlines fundamental ethical principles that form the basis for the
remainder of the Code. Section 2 addresses additional, more specific
considerations of professional responsibility. Section 3 guides individuals who
have a leadership role, whether in the workplace or in a volunteer professional
capacity. Commitment to ethical conduct is required of every ACM member,
and principles involving compliance with the Code are given in Section 4.

© IN D » D

On This Page

Preamble

1. GENERAL ETHICAL
PRINCIPLES.

1.1 Contribute to society
and to human well-being,
acknowledging that all
people are stakeholders in
computing.

1.2 Avoid harm.

1.3 Be honest and
trustworthy.

1.4 Be fair and take action
not to discriminate.

1.5 Respect the work
required to produce new
ideas, inventions, creative
works, and computing
artifacts.

1.6 Respect privacy.



The Ethical Software Architect?

Ethics of the Product

e “First, do no harm”
* Legal limits

* Fair pricing

* Dual use

* Human dignity

* Human control

* Tracking and privacy

Ethics of the Construction

* Bias in data sets

* Accessibility

* Resource usage, energy consumption
* Violating licenses of reused libraries
* Robustness guarantees

* Engineering shortcuts to save costs

* Code of conduct



C @& github.com/scrapy/scrapy/blob/master/CODE_OF_CONDUCT.md Q@ M ¥ O O ® =

77 lines (58 sloc) 3.26 KB <> [ Raw Bame B B ~Z2 U

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as contributors and
maintainers pledge to make participation in our project and our community a harassment-free
experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and
expression, level of experience, nationality, personal appearance, race, religion, or sexual
identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment include:



Software Architecture is about People

* “Maybe half of software development is about nerd stuff
happening at the whiteboard and about typing at the keyboard.”

* “The other half is about people and relationships.

* “There are few software team activities where this becomes more
obvious than during architecture formulation.”

33



Essay E1: Product Vision

naracterization of what the project aims to achieve

C

The key domain concepts (underlying domain model)

The system’s main capabilities (e.g. use cases), visible to (end) user
T

ne current/future (external) context in which the system operates

A S

The stakeholders involved in the project, and what they need from
the system so that it is beneficial to them

6. The key quality attributes the system must meet

7. A product roadmap for the upcoming years
8. Ethical considerations of the system and its construction process



Essay 2:
The System’s Architecture



Problem Space

/ Problem

Definition

Functional
Requirements

Extra-Functional

Solution Space

\Requirements /

\-

Data Models

Acceptance Tests

~

Code

/

36



Software
Architecture

From Vision to System — Solution Modeling &

* A system's architecture may be visualized and represented using
models that are somehow related to the code

* An architectural model is an artifact that captures a selection of key
design decisions

* Architectural modeling is the reification and documentation of those
design decisions.

* Every system has an architecture
* Some architectures are manifest and visible, many others are not



Abstraction and Interpretation

Abstraction

some information
IS intentionally
left out

Real Interpretation
System A solve ambiguities
add missing
decisions

 The architecture models only some interesting aspects of a
software system. N



Solving Problems with Models

Abstract Abstract

Problem

Solution

# Interpretation

Solve directly > Solution

Abstraction

=
)
<
92}
= 3
joV)
=

39

Problem

e Abstract models help to find solutions to difficult engineering
problems.



Question First, Model Second

* Different models have different purposes

* Know what questions you want the model to answer
before you build it

George Box: All models are wrong, but some are useful

Shneiderman’s (visualization) mantra:
Overview first, zoom and filter, details on demand

http://www.codingthearchitecture.com/2015/01/08/shneidermans_mantra.html

40

Software
Architecture

Ch. 4



Software
Architecture

Organize our Models in “Views” ch d

* No single modeling approach can capture the
entire complexity of a software architecture

* Various parts of the architecture (or views) may
have to be modeled with a different:

* Notation
e Level of detail

* Target audience < System >

* Aview is a set of design decisions related by
common concerns (the viewpoint)

Viewpoint

Which views can you think of?




C4

Context

Components

Software

Architecture @lasses

for Developers

Visualise, document and explore

your software architecture

Simon Brown

https://c4model.com/



. Distinguish what needs 10 be built from what alres
nd the integration poin

define the dependenc'\es a

System Context View Example

listen

provide

charge|customers

Payment
System




Contaliners View

* What are the main logical
execution environments in
which the system can run?

e Containers can be deployed
separately and independently
evolved

e Container: architectural
abstraction (beyond Docker)

Examples:

* Server-side Web application

* Client-side Web application

* Client-side desktop application
* Mobile app

* Server-side console application
* Shell script

* Microservice

* Data store




Container View Example

listen App

with
Customer sSongs orovide (N2
Database Repository ||content for

charge|customers

Payment
System

45



Software
Architecture

Components View chig

e What is the structural decomposition of the software with related
functionality encapsulated behind a well-defined interface?

* What are the dependencies between components?

* Are there shared components that will be deployed in multiple
containers?

 What is the technology used to build the components?
(programming languages, framework decisions)



Software

Components View Example

listen

Ap

Cesare Pautasso

i)

with

User
Interface

User
Account

download music

customer
Database

Songs
Repository

47



Software System

Container

(e.g. client-side web app, server-side web app, console application,
mobile app, microservice, database schema, file system, etc)

Component

48



Level 1
Context

Level 2
Containers

The C4 model for visualising
software architecture

cdmodel.com

Level 3 Level 4
Components Code

49



http://www.codingthearchitecture.com/2015/01/08/shneidermans_mantra.html

System Context

The system plus users
and system dependencies

Containers

The overall shape of the architecture
and technology choices

Components

Logical components and their
interactions within a container

Classes

Component or pattern
implementation details

Overview
first

Zoom and
filter

Details
on demand

50



arc42.org: A Template for Architecture
Communication and Documentation

ua
Goals Goals Stakeholder

1. Introduction and Goals

Goal Description Who? | Expectation?

. O %
2. Constraints @T
Scope & Context
G business technical

3. Context and Scope T~ = T
m-

51



The arc42.org Template for

Architecture Communication and Documentation

4.

Solution strategy

Building block view

Run time view

Deployment view

Crosscutting concepts

Architectural decisions \ /
o

Crosscutting
Concepts

52




The arc42.org Template for
Architecture Communication and Documentation

Usage
] ] % —*| System —>@
10. Quality Requirements

/ Metric
™

/—/\\/-/

Event, stimulus Reaction

a : i e :
/@ ~
11. Risks and Technical Debt AI'C

arc42 Documentation
139 tips how to use the arc42 tenmiplate.




Essay 2: The System’s Architecture

. The main architectural style or patterns applied (if relevant), such as layering or model-view-controller
architectures.

. Containers view: The main execution environments, if applicable, as used to deploy the system.

3. Components view: Structural decomposition into components with explicit interfaces, and their inter-

dependencies

4. Connectors view: Main types of connectors used between components / containers.

. Development view, covering the system decomposition and the main modules and their dependencies, as
embodied in the source code.

. Run time view, indicating how components interact at run time to realize key scenarios, including typical run
time dependencies

. How the architecture realizes key quality attributes, and how potential trade-offs between them have been
resolved.

. API design principles applied



