
TU Delft IN4315:
Software Architecture

Lecture 2:
The Vision (E1) and the System (E2)

Arie van Deursen

1

Defining Software Architecture

1. How would you define software architecture?
2. How does your definition of software architecture relate to

what an architect does?
3. Can you name examples of well known systems with great or

influential architectures?

2

Please enter your thoughts in the chat!

3

Unix, Git, Eclipse, Emacs, LLVM, REST, Selenium, JUnit, ...

The Architecture of a System (IEEE):

• The set of fundamental concepts or properties

• of the system in its environment,

• embodied in its elements and relationships,

• and the principles of its design and evolution.

4

The Architecture of a System (Roy Fielding)

• A configuration of architectural elements
(components, connectors, and data)
• constrained in their relationships
• in order to achieve a desired set of

architectural properties.

Constraints: Focus on what is and is not allowed

5

Architecture Defined

Architecture represents
the significant design decisions

that shape a system
where significant is measured

by cost of change

(Grady Booch, March 2006)

6Grady Booch, ACM/IEEE/IBM Fellow

Ch. 3

“Principal Design Decisions”

Aspects:
• Structure
• Behavior
• Interaction
• Deployment
• User Interface
• Implementation

Principal

• Needed to meet (quality) goals of stakeholders

• Shape (likely) future design decisions
• “already taken” to make life easier
• “simplify”: offering guidance on future decisions
• “limit”: In retrospect unwise, but hard to change.

Ch. 3

Design issue Design alternatives Design decision, with rationale

Ch. 3

Descriptive or Prescriptive?

• Prescriptive:
• Decisions of the future – architecture as it should be
• Idealized version of the past – architecture as it should have been

• Descriptive:
• Decisions of the past – architecture as it is
• Maybe complex due to repeated violations / short cuts
• May have to be “recovered” from actual system (architectural archeology)

• Erosion:
• Undermining of originally prescribed architecture

Ch. 3

Essay 1: The Product in its Context

• What do we want?
• The guiding principles / product vision
• Key scenarios illustrating the usage
• Analysis of key domain concepts

• What do we need from the outside world?
• The system context and external dependencies

• Who do we want it for?
• Users and other stakeholders

• How good should it be?
• Key quality attributes

Answering these questions
imposes order

on the problem:

This involves design
already

Shared Story = Product Vision

• Clear vision of what the product is and will do
• Simple, compelling, articulated, shared
• Comes with a credible roadmap towards this vision.
• Expressible in terms that are understandable to end users
• Driven / enabled by sound architectural foundations

• Co-production of product manager and architect

12

13

14

The “Domain Model”

• Refutable truths about the real-
world
• Outside your control
• Your system will be evaluated

against it
• Architecturally significant

requirements

• Problem domain description:
• Information (invariants,

navigation, snapshots)

• Functionality (use-case
scenarios, feature models)
• Define shared vocabulary and

understanding towards your
customer, domain expert

Ch. 4

Ch. 4

18
https://quotesondesign.com/eliel-saarinen/

19

Ch. 4

Ch. 4

Ch. 4

Recognizing a System’s Stakeholders

• Video / music producers and consumers
• Advertisers
• Regulators (privacy, intellectual property)
• ...

• Marketing and sales
• Management
• Investors
• ...

• Developers
• Operations
• Testers
• Designers
• Architect
• ...

22

(E
nd

) U
se

rs
Bu

sin
es

s De
ve

lo
pm

en
t &

 O
pe

ra
tio

ns

Stakeholders in Open Source?

Types of Stakeholders
• Developers, testers, reviewers,...
• End users, API consumers
• Apache, Linux, Eclipse, ...

foundations
• Companies relying on open

source
• Companies selling open source

Finding Stakeholders
• Open documentation
• Issue tracking system
• Pull request discussions
• License
• ...

How Good Should the System be? Ch. 1,2

24

Quality Attributes

• Desirable properties of a system (under construction)

• External: fitness for purpose / does it meet stakeholder needs
• Internal: fitness for engineering process / can devs work with it
• Internal attributes indirectly affect many external attributes

• Static: structural properties of the design / code
• Dynamic: run time properties of the system in action

25

Ch. 2

A Catalogue of “ilities”

• Meta Measurability, auditability
• Functionality Correctness, completeness
• Design Modularity, reusability
• Operation Usability, performance, scalability
• Failure Recoverability, reliability, availability
• Attack Privacy, confidentiality, integrity
• Change Flexibility, extensibility, configurability
• Long-term Maintainability, explainability

Ch. 2

26

Managing “ility” tradeoffs

• Privacy vs usability
• Modularity vs time-to-market
• Availability vs configurability
• Extensibility vs integrity
• Performance vs interoperability
• Performance vs confidentiality
• ...

27

The architect needs to
understand which
attributes must be

optimized, and which
ones can be sacrificed

Right and Wrong in Software Architecture

28

Ethics

Well-founded standards of right and wrong
that prescribe what humans ought to do,

usually in terms of rights, obligations, benefits to society,
fairness, or specific virtues.

29

The continuous effort of studying
our own moral beliefs and our moral conduct,

and striving to ensure that we, and the institutions we help to shape,
live up to standards that are reasonable and solidly-based

ht
tp
s:
//
w
w
w
.s
cu
.e
du

/e
th
ic
s/
et
hi
cs
-r
es
ou

rc
es
/e
th
ic
al
-d
ec
isi
on

-m
ak
in
g/
w
ha
t-i
s-
et
hi
cs
/

30

The Ethical Software Architect?

Ethics of the Product
• “First, do no harm”
• Legal limits
• Fair pricing
• Dual use
• Human dignity
• Human control
• Tracking and privacy

Ethics of the Construction
• Bias in data sets
• Accessibility
• Resource usage, energy consumption
• Violating licenses of reused libraries
• Robustness guarantees
• Engineering shortcuts to save costs
• Code of conduct

31

Software Architecture is about People

• “Maybe half of software development is about nerd stuff
happening at the whiteboard and about typing at the keyboard.”

• “The other half is about people and relationships. “

• “There are few software team activities where this becomes more
obvious than during architecture formulation.”

33

Essay E1: Product Vision

1. Characterization of what the project aims to achieve
2. The key domain concepts (underlying domain model)
3. The system’s main capabilities (e.g. use cases), visible to (end) user
4. The current/future (external) context in which the system operates
5. The stakeholders involved in the project, and what they need from

the system so that it is beneficial to them
6. The key quality attributes the system must meet
7. A product roadmap for the upcoming years
8. Ethical considerations of the system and its construction process

34

Essay 2:
The System’s Architecture

35

36

Ch. 3

From Vision to System – Solution Modeling

• A system's architecture may be visualized and represented using
models that are somehow related to the code
• An architectural model is an artifact that captures a selection of key

design decisions
• Architectural modeling is the reification and documentation of those

design decisions.
• Every system has an architecture
• Some architectures are manifest and visible, many others are not

Ch. 4

Ch. 4

38

Ch. 4

39

Question First, Model Second

• Different models have different purposes
• Know what questions you want the model to answer

before you build it

George Box: All models are wrong, but some are useful

Ch. 4

Shneiderman’s (visualization) mantra:
Overview first, zoom and filter, details on demand

http://www.codingthearchitecture.com/2015/01/08/shneidermans_mantra.html
40

Organize our Models in “Views”

• No single modeling approach can capture the
entire complexity of a software architecture
• Various parts of the architecture (or views) may

have to be modeled with a different:
• Notation
• Level of detail
• Target audience

• A view is a set of design decisions related by
common concerns (the viewpoint)

Ch. 4

Which views can you think of?

https://c4model.com/
42

43

Containers View
• What are the main logical

execution environments in
which the system can run?

• Containers can be deployed
separately and independently
evolved

• Container: architectural
abstraction (beyond Docker)

Examples:
• Server-side Web application
• Client-side Web application
• Client-side desktop application
• Mobile app
• Server-side console application
• Shell script
• Microservice
• Data store

Ch. 4Ch. 4

44

Ch. 4

45

Components View

• What is the structural decomposition of the software with related
functionality encapsulated behind a well-defined interface?
• What are the dependencies between components?
• Are there shared components that will be deployed in multiple

containers?
• What is the technology used to build the components?

(programming languages, framework decisions)

Ch. 4

46

Ch. 4

47

48

49

50

ht
tp
:/
/w

w
w
.c
od

in
gt
he

ar
ch
ite

ct
ur
e.
co
m
/2
01

5/
01

/0
8/
sh
ne

id
er
m
an
s_
m
an
tr
a.
ht
m
l

arc42.org: A Template for Architecture
Communication and Documentation

1. Introduction and Goals

2. Constraints

3. Context and Scope

51

The arc42.org Template for
Architecture Communication and Documentation

4. Solution strategy

5. Building block view

6. Run time view

7. Deployment view

8. Crosscutting concepts

9. Architectural decisions

52

The arc42.org Template for
Architecture Communication and Documentation

10. Quality Requirements

11. Risks and Technical Debt

53

Essay 2: The System’s Architecture

54

