
TU Delft IN4315:
Software Architecture

Lecture 1:
Introduction and Labwork

Arie van Deursen and Diomidis Spinellis

1

IN4315
and Covid

2

Covid isn’t over yet

Be respectful of everybody’s way of
coping with Covid

Follow the rules set by the government
and university

Contact teachers / teaching assistants if
you’re affected

Help each other

Hybrid Online/On campus Lectures

On campus

• Max 75 room capacity
• Enroll via the queue
• No symptoms / negative test
• Please wear a mask when:
• Walking
• Sitting < 1.5m distance

Remote

• Please participate via chat
• Answer teacher’s questions
• Ask questions

• Login with TU Delft credentials
• Lectures and chat will be recorded
• TAs will monitor chat and relay

3
Erik Sennema Raoul Kalisvaart

Covid and IN4315 group work
• All lab-work in teams of four
• Encouraged and permitted to meet in person frequently
• Fallback: Doing everything remote is possible

• You or your team members may get sick this quarter
• Please start in time with assignments
• Plan for need to step in if one team member gets sick
• If needed, discuss fallback options with TAs / teachers

4

The Lean Secret: Everybody, All together, Early On

Who am I?

• Professor in Software Engineering at TU Delft
• Research interests:
• developer productivity, software testing, trustworthy AI, SE4AI, AI4SE

• Scientific director: AI for Fintech Research (AFR)
• 5 year project with ING, 10 PhD students, 10+ MSc/Bsc students per year

• Head of the Department of Software Technology at TU Delft
• ±250 people working on algorithmics, embedded systems, programming

languages, web information systems, distributed systems, sw. engineering

• Co-founder of two companies: SIG and PerfectXL

5

Today’s Kickoff Lecture

1. Welcome

2. What is it that software architects do?

3. What are we going to do together?
• Labwork, coding, writing
• Way of working
• Peer review and grading

4. What is the structure of this course?
• Schedule & deadlines

5. [A sneak preview of the first assignment]

6

A Software Architecture
Body of Knowledge

• A very broad topic
• Mix of people skills, technical skills, and domain

sensitivity
• Reusable architectural knowledge often abstract
• Architects need ability to make such knowledge
concrete in their own context

• The architect is never finished learning

7

ß Gregor Hohpe’s “Architect’s Bookshelf”

https://se.ewi.tudelft.nl/delftswa/suggested-reading

1. Introduction
2. Quality Attributes
3. Definitions
4. Modeling Software Architecture
5. Modularity and Components
6. Reusability and Interfaces
7. Composability and Connectors
8. Compatibility and Coupling
9. Deployability, Portability and Containers
10. Scalability
11. Availability and Services
12. Flexibility and Microservices

8

What do Software Architects do?

1. What are the key responsibilities of the software architect?

2. What makes a great software architect?

3. Can you name examples of (well-known) software architects?

Please enter your thoughts in the chat!

9

Software Architects in Software History

• Margaret Hamilton – Apollo moon lander
• Steve Jobs – Apple
• Erich Gamma – Visual Studio Code
• Adele Goldberg – Smalltalk
• Ken Thomson & Dennis Ritchie – Unix
• Fred Brooks – IBM OS360
• Grace Hopper – Flow-Matic / Cobol
• Ada Lovelace – The first?

For more, see https://computingthehumanexperience.com/people/ 10

https://computingthehumanexperience.com/people/

Key Responsibilities: 1. Make decisions

• Architects carry overall responsibility for all technical decisions

• Lead an organization that takes the right decisions
• Willing and able to take them where needed

• High level decisions (”styles”) governing overall architecture
• Ability to defer decisions when safe to do so
• Keep options open in light of future developments

11

Thus: The Great Software Architect ...
... must be Technical Authority

Software Engineering
• Excellent Software Engineering skills
• Promote good development practices
• Solve the hard problems
• Lead technical development team

by example
• Understand impact of decisions
• Defend architectural design decisions
• Plan and manage software releases

Technology
• Know and understand relevant

technology
• Evaluate and influence choice of 3rd

party frameworks, components and
platforms
• Track technology evolution
• Know what you do not know

Ch. 3

“Coding Architect”: Join team, contribute code, program in pair
12

Key Responsibilities: 2. Talk to Business

• Architects can explain business impact of technical decisions taken

• Traditionally: Map “problem domain” to “solution domain”
• Modern: Turn technical capabilities into new business opportunities

• Translate technical risk into business risk
• Willing and able to easily switch technical and business perspectives

13

Thus, the Great Architect ...
... must be Great Communicator Ch. 3

14

People to Talk to Ch. 3

15

https://www.youtube.com/watch?v=Zq2VcRZmz78

Gregor Hohpe

16

Shared Story = Product Vision

• Clear vision of what the product is and will do
• Simple, compelling, articulated, shared
• Comes with a credible roadmap towards this vision.
• Expressible in terms that are understandable to end users
• Driven / enabled by sound architectural foundations

• Co-production of product manager and architect

17

Key Responsibilities: 3. Embrace Change

• Architects enable (embrace!) change

• Architects are “living in the first derivative”
• Manage change-induced risk
• Anticipate change
• Defer decisions that would block change
• Safeguard successful rate of change
• Optimize processes to accelerate rate of change
• Work with incomplete information

18

Sam Newman: Core Responsibilities
of the “Evolutionary Architect”

• Vision: Ensure there is a clearly communicated technical vision for the
system that will help your system meet the requirements of your
customers and organization
• Empathy: Understand impact of your decisions on end users and team
• Collaboration: Engage with as many people as possible to realize vision
• Adaptability: Adjust vision when needed
• Autonomy: Balance autonomy and overall consistency
• Governance: Ensure system built meets vision

19

“Expectations of
an Architect”

• Make architecture decisions

• Continually analyze the architecture

• Keep current with latest trends
technological developments

• Ensure compliance with decisions
• Diverse exposure and experience

• Have business domain knowledge

• Possess interpersonal skills
• Understand and navigate politics

20

Exercises

Reflect on a software development project, or even better an
organization you are familiar with:
1. Who were the architects?
2. How did they fulfill their three key responsibilities?
3. Who were the architects mostly talking to? How many floors did

they span?
4. How explicit was the (technical) vision? What was this vision?
5. What did the project do to optimize the rate of change?
6. What do you see as architectural do’s and don’ts in this project?

21

Further Reading

• Martin Fowler. Who needs an architect? IEEE Software, 2003
https://martinfowler.com/ieeeSoftware/whoNeedsArchitect.pdf
• Gregor Hohpe. The Architect Elevator — Visiting the upper floors.

https://martinfowler.com/articles/architect-elevator.html
• Gregor Hophe. The Software Architect Elevator. O’Reilly, 2020.

Chapters 1-5
• Sam Newman. Building Microservices. O’Reilly, 2015. Chapter 2.
• Mark Richards and Neal Ford. Fundamentals of Software

Architecture. O’Reilly, 2020. Chapter 1.
• Cesare Pautasso. Software Architecture. Leanpub, 2020. Chapter 3

https://leanpub.com/software-architecture/
22

https://martinfowler.com/ieeeSoftware/whoNeedsArchitect.pdf
https://martinfowler.com/articles/architect-elevator.html
https://leanpub.com/software-architecture/

IN4315 Labwork:

Software architecture is about
• People:
• You work in teams of four

• Real systems:
• You adopt an open source system
• To analyze, describe, and improve
• And interact with its developers

• Communication:
• You will write and present

23

Team Formation

• 4 != 3, 4 != 5
• Aim for a diverse team:
• Git knowledge, programming skills, writing, presentation, domain knowledge
• Bachelor background, master track, geography, ...

• Brightspace discussion forum “Partners Wanted”
• Form your group on Brightspace (Collaboration / Groups)

• DEADLINE: Monday February 14, 17:00

24

Team Coach

• One of the teachers / TAs / PhD students
• One per team
• 30m meetings in week 2, 4, 6 of the course
• Offer short presentation of progress
• Ask-them-anything

• Think how to map theory to your system
• Think about interesting aspects of your

system to study
• Online or in person

Coaches:
Leonhard Applis
Arie van Deursen
Raoul Kalisvaart

Zoe Kotti
Lorena Poenaru-Olaru

Erik Sennema
Thodoris Sotiropoulos

Diomidis Spinellis

25

System Selection

• A system your team is passionate about
• A system that is sufficiently active:
• Open to external contributions
• At least one accepted pull request per day

• A system that’s not too simple
• A system that may be very complex, but then possibly with

meaningful sub-system to focus on.
• Written in any programming language you master
• Selection must be approved by TAs

Use Brightspace
“Claim your project” forum.

DEADLINE:
Monday February 14, 17:00

26

27

Learn from Open Source Architects:
Offer them a Contribution

• Make a useful contribution to the
system you study

• Offer it to the system’s architects as a
pull request

• They will discuss it with you,
… and hopefully merge it.

Get in touch with the
architects!

Make them read your work

Interview them for your blog?!

28

29ht
tp

s:
//

m
ed

iu
m

.c
om

/@
da

ni
el

.h
el

le
r/

te
n-

pr
in

ci
pl

es
-fo

r-g
ro

w
th

-6
90

15
e0

8c
35

b

30

Assignments E1-E4: (Technical) Essay Writing

Each team writes four essays (1500-2000 words):

1. the product vision, including required capabilities, roadmap,
product context, domain model, and stakeholder analysis.

2. architectural decisions made, including system decomposition,
tradeoff points, as well as architectural styles and patterns adopted.

3. an assessment of quality and (potential) technical debt; and
4. a scalability study identifying possible scalability issues and

proposing architectural changes to address them.

31

Peer Review

• Learn one project very well – your own
• Learn about other projects by studying other team’s essays

• Each student writes four reviews, one for essays E1-E4 each
• Each group receives feedback in 16 reviews
• Four reviews for each essay E1-E4

• We’ll use peer.ewi.tudelft.nl

32

Public Writing makes Better Writers

• Objective 1: Write for the course
• Objective 2: Write for the world

• Throughout the course, your team can make your work available
• This is optional: if you prefer privacy that’s OK too
• Simply flip flag in blog’s meta-data

• Delft Students on Software Architecture (DESOSA)

33

34

35

The four essays for
Ludwig

36

The first essay for
RIOT

37

38

Blogging in Hugo

• All text in markdown
• YAML meta data about posts

• Full site rendered by Hugo
• Can be previewed locally

• Textual version control and diffing in git

39

The DESOSA 2022 GitLab Repo

• 100 students in a single git repo – worked very well previous years
• content/projects/<your project name>
• /posts
• /images
• /contributions
• /journals

• You can push branches and merge pull requests
• Merge is team decision: Full team is responsible
• Only make changes to your folder!

40

Manage your Time!

• Considerable freedom (own initiative) in what you do
• Not everything you do may be visible in essays
• Therefore, you need to explain how you spent your time
• 5 EC = 140 hours; In 9 week course = 16 hours per week!
• Per student: short, reflective journal, commit one entry per week
• Track how many hours you spent
• Main activities conducted
• Main output produced
• Summary of key things learned

41

42

All Communication: Mattermost

• Announcements – main channel, low traffic, essentials only!
• Questions – ask (answer!) questions here
• We may create some more sub-channels here

• Team-XYZ (public): Main communication hub for your team
• Accessible to all; others can help / learn
• Use to leave an evidence trail of you work.
• Use to integrate with (learn from / help) other teams
• All communication in English
• MINIMIZE USE OF WHATSAPP, EMAIL, TELEGRAM, ... (and not even Signal)
• In person / video call? Post short summary on Mattermost

• Off-Topic – your random noise

See registration link on
BrightSpace

43

Personal (Pandemic) Complications

• Make sure you stay safe and healthy
• When all goes well:
• Make your hours, and keep your journal up to date on weekly basis

• In case of serious issues: Always contact EEMCS student counsellor
• We’ll find a solution
• Your up to date journal will be the starting point

• For minor disturbances:
• Use your journal to explain temporary lack of progress
• Indicate in journal how you and your team will handle it

• Feel free to contact TAs or teacher(s) at any time (email, mattermost)

44

Teaching Philosophy: Open Learning

• This course is open by design
• You learn from what others are doing
• You share your work with others

• Interaction with open source systems is public
• You can use an anonymous github account if you wish

• Team decision to make their writings public

45

Erik Duval

bell hooks

Closing Day: Wednesday March 30, full day

• Details will follow and will depend on:
• nr of students participating
• and pandemic developments

• To prepare
• A ten minute video from each group
• A poster from each group
• Both optionally made public

• To participate:
• Watch a selection of other teams
• Ask questions and give feedback

46

Ambition:
An on campus celebration,

where you learn
and share knowledge,
concluded with drinks

47

48

49

How to Spend Week 1?

• Find a team
• Find a system
• Get onto gitlab
• Make your first DESOSA commit

• Watch Gregor Hohpe’s “Architect Elevator” video
• Study Pautasso’s Chapters 1-3
• Explore https://docs.arc42.org/, sections 1-3 (requirements,

stakeholders, constraints, context, external interfaces)
50

https://docs.arc42.org/

