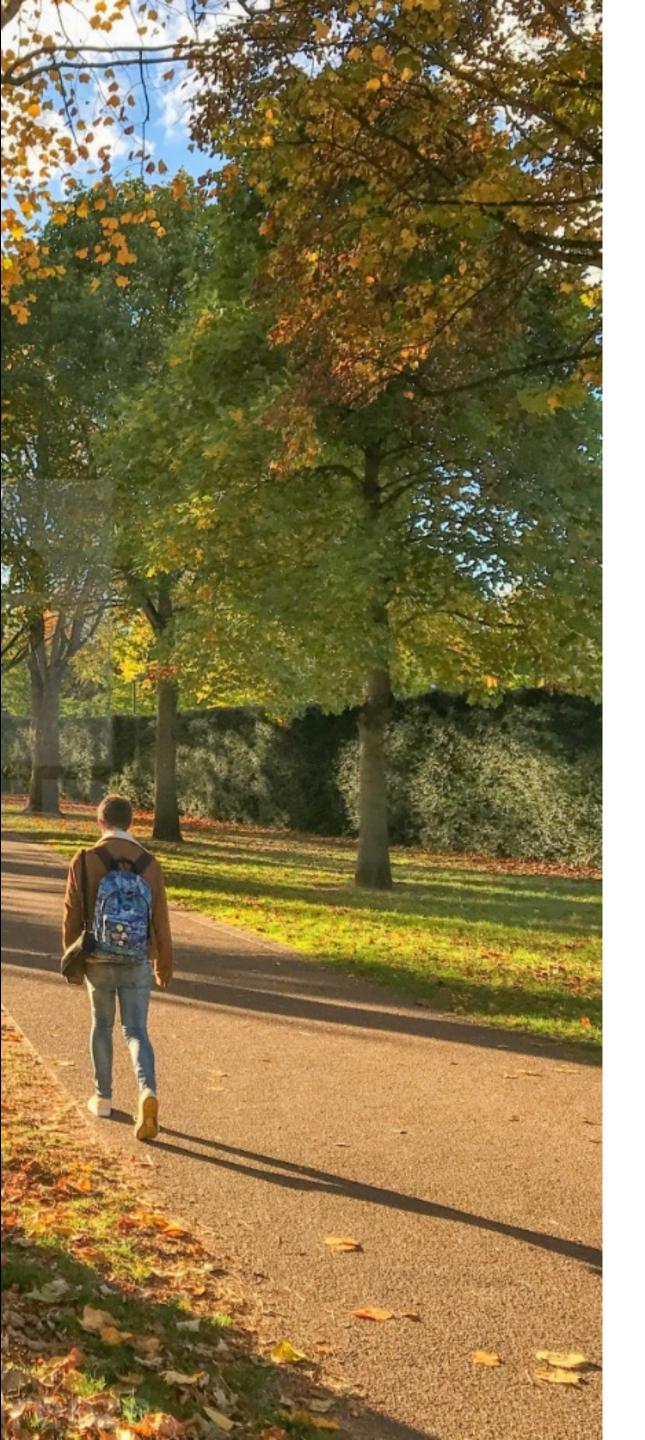


Architecting for Sustainability Software Architecture (IN4315)



TUDelft

<u>@luismcruz</u>

L.Cruz@tudelft.nl

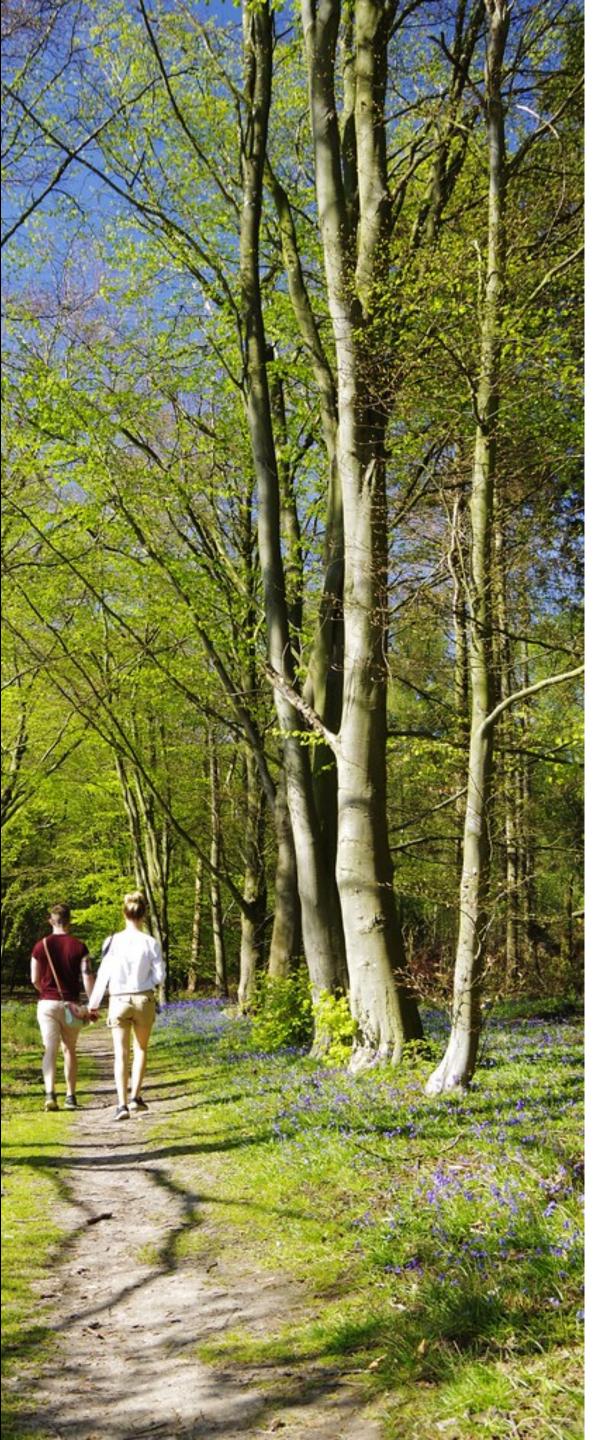
<u>https://luiscruz.github.io/</u>

If you are worried about someone or you are in need of guidance yourself, don't wait. We may not physically be together at EWI but we are a community in which there is always someone to talk to. You can contact:

- ac-msc-eemcs@tudelft.nl
- Your own GP or the SGZ.
- anonymous)
- 22:00)

Your own <u>academic counsellor</u> by making an appointment <u>here</u> or writing an email to

One of the student psychologists at <u>psychologen@tudelft.nl</u>

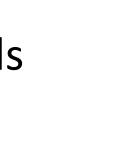

There is also a hotline for suicide prevention: <u>www.113.nl</u> or call 0800-0113 (this is

Is there an emergency on campus? Call $015 - 278\ 8888$ of $112\ (24/7)$

MoTiv has group and individual consultations - call 015 2006060 (16:00 – 18:00 en 20:00 –

How do you balance between studying and time off? Finding time to enjoy your courses, getting to know people in a project, managing your time: you can find all kinds of tips, tools and support at TUD's wellbeing and study page.

Are you looking for online social events to meet up with fellow students? Check out <u>CH's calendar</u>, <u>ETV's calendar</u> or <u>Delft/SEA</u>. Activities are in English and open to everybody.


Looking for ways to energize yourself by trying something new? There is a well being week with all kinds of different activities starting from February onwards. X has all kinds of online courses on offer, also the fields and courts are open again. You can even go to a Gardening Quiz. Also, MoTiv offers inspiration workshops in May.

Opening up and talking to the people around you is a vital part of keeping your perspective. Finding students to work together with, meeting up frequently to check in on each other. For practical tips on taking initiative and finding balance between studying and time off: you are also welcome to make <u>an appointment</u> with an academic counsellor at EWI.

We are all looking for a bit of balance within the limitations of the current situation. Variety is, after all, the spice of life and this not only applies to food!



Internation of the second s

Collaboration between ING and TU Delft.

Al for Fintech Research (AFR)

INTROME REPORTS

- Collaboration between **ING** and **TU Delft**.
- Artificial Intelligence, Data Analytics, and Software Analytics in the context of FinTech.

- Collaboration between **ING** and **TU Delft**.
- Artificial Intelligence, Data Analytics, and Software Analytics in the context of FinTech.
- Officially started in January 2020.

- Collaboration between **ING** and **TU Delft**.
- Artificial Intelligence, Data Analytics, and Software Analytics in the context of FinTech.
- Officially started in January 2020.
- 11 research tracks, 5 years.

- Collaboration between **ING** and **TU Delft**.
- Artificial Intelligence, Data Analytics, and Software Analytics in the context of FinTech.
- Officially started in January 2020.
- 11 research tracks, 5 years.
- Website: <u>https://se.ewi.tudelft.nl/ai4fintech/</u>

- Collaboration between **ING** and **TU Delft**.
- Artificial Intelligence, Data Analytics, and Software Analytics in the context of FinTech.
- Officially started in January 2020.
- 11 research tracks, 5 years.
- Website: <u>https://se.ewi.tudelft.nl/ai4fintech/</u>
- Twitter: <u>@Ai4Fintech</u>

2. Measuring Energy Consumption.

3. Energy Patterns (Additionally/Maybe: Energy-efficient Programming Languages)

2. Measuring Energy Consumption.

3. Energy Patterns (Additionally/Maybe: Energy-efficient Programming Languages)

2. Measuring Energy Consumption.

Outline

4. Wrap-up

Sustainability Design and Software: The Karlskrona Manifesto

Christoph Becker Faculty of Information University of Toronto Toronto, ON, Canada christoph.becker@utoronto.ca

Ruzanna Chitchyan University of Leicester Leicester, UK rc256@leicester.ac.uk

Leticia Duboc Dept of Computer Science Dept of Inf. & Computer Science Dept of Computer Science State Univ. of Rio de Janeiro Rio de Janeiro, Brazil leticia@ime.uerj.br

Steve Easterbrook University of Toronto Toronto, ON, Canada sme@cs.utoronto.ca

Birgit Penzenstadler Institute for Software Research University of California, Irvine Irvine, California, US bpenzens@uci.edu

Norbert Seyff Dept of Informatics University of Zurich Zurich, Switzerland seyff@ifi.uzh.ch

Colin C. Venters School of Computing & Engineering University of Huddersfield Huddersfield, UK c.venters@hud.ac.uk

Abstract-Sustainability has emerged as a broad concern for society. Many engineering disciplines have been grappling with challenges in how we sustain technical, social and ecological systems. In the software engineering community, for example, maintainability has been a concern for a long time. But too often, these issues are treated in isolation from one another. Misperceptions among practitioners and research communities persist, rooted in a lack of coherent understanding of sustainability, and how it relates to software systems research and practice. This article presents a cross-disciplinary initiative to create a common ground and a point of reference for the global community of research and practice in software and sustainability, to be used for effectively communicating key issues, goals, values and principles of sustainability design for software-intensive systems. The centrepiece of this effort is the Karlskrona Manifesto for Sustainability Design, a vehicle for a much needed conversation about sustainability within and beyond the software community, and an articulation of the fundamental principles underpinning design choices that affect sustainability. We describe the motivation for developing this manifesto, including some considerations of the genre of the manifesto as well as the dynamics of its creation. We illustrate the collaborative reflective writing process and present the current edition of the manifesto itself. We assess immediate implications and applications of the articulated principles, compare these to assets, some now speak of a 'digital dark age' [4], where, current practice, and suggest future steps.

I INTRODUCTION

It is clear that society is facing major sustainability challenges that require long-term, joined-up thinking. How do we sustain our technical infrastructures, given how much we rely on them for everything from communication and navigation society, given the erosion of trust in our political institutions criteria. The larger impact of software artefacts on society and a growing inequality in ownership of resources? And, and the natural environment is not routinely analyzed. But above all, how do we sustain the planetary systems that support by trading off longer-term sustainability questions for shorterlife on earth, in the face of accumulation of pollutants, species term success criteria, we accumulate threats to sustainability. loss, and accelerating climate change?

The discipline of Software Engineering (SE) has a major role to play in sustainability, because of the extent to which software systems mediate so many aspects of our lives. However, software practice has a tendency to focus only on the immediate effects and tangible benefits of software products and platforms. SE research has, for the most part, focused on increasing the reliability, efficiency and cost-benefit relation of software products for their owners, through a focus on processes, methods, models and techniques to create. verify and validate software systems and keep them operational.

The lack of long-term thinking in software engineering research and practice has been critiqued throughout the history of the discipline. For example, software maintenance and evolution were raised as concerns even at the very first software engineering conference [1]. Since then, efforts to increase the maintainability of software products and facilitate their evolution have often focused on improving architecture, decreasing lifecycle costs and managing technical debt [2]. Neumann has criticized the lack of long-term thinking over security considerations in SE [3]. For our digital information having discarded analog media in preference for digital, we now find that many of these assets become unreadable, due, in part, to the rapid lifecycles of software technology.

While progress has been made on design for maintainability of software per se, considerations that extend beyond immediate software product qualities and user benefits are generally treated as secondary concerns, optional qualities to through to storing health records, identifying security threats, be addressed only after the system under design has been and keeping the lights on? How do we sustain prosperity in shown to be a success in terms of technical and/or marketing We argue that this trade-off itself is unnecessary. As Neumann

ndividual. Mental and physical well-being, education, freedom, self-respect, mobility, agency.

Sustainability Design and Software: The Karlskrona Manifesto

Christoph Becker Faculty of Information University of Toronto Toronto, ON, Canada christoph.becker@utoronto.ca

Ruzanna Chitchyan University of Leicester Leicester, UK rc256@leicester.ac.uk

Leticia Duboc Dept of Computer Science Dept of Inf. & Computer Science Dept of Computer Science State Univ. of Rio de Janeiro Rio de Janeiro, Brazil leticia@ime.uerj.br

Steve Easterbrook University of Toronto Toronto, ON, Canada sme@cs.utoronto.ca

Birgit Penzenstadler Institute for Software Research University of California, Irvine Irvine, California, US bpenzens@uci.edu

Norbert Seyff Dept of Informatics University of Zurich Zurich, Switzerland seyff@ifi.uzh.ch

Colin C. Venters School of Computing & Engineering University of Huddersfield Huddersfield, UK c.venters@hud.ac.uk

Abstract-Sustainability has emerged as a broad concern for society. Many engineering disciplines have been grappling with challenges in how we sustain technical, social and ecological systems. In the software engineering community, for example, maintainability has been a concern for a long time. But too often, these issues are treated in isolation from one another. Misperceptions among practitioners and research communities persist, rooted in a lack of coherent understanding of sustainability, and how it relates to software systems research and practice. This article presents a cross-disciplinary initiative to create a common ground and a point of reference for the global community of research and practice in software and sustainability, to be used for effectively communicating key issues, goals, values and principles of sustainability design for software-intensive systems. The centrepiece of this effort is the Karlskrona Manifesto for Sustainability Design, a vehicle for a much needed conversation about sustainability within and beyond the software community, and an articulation of the fundamental principles underpinning design choices that affect sustainability. We describe the motivation for developing this manifesto, including some considerations of the genre of the manifesto as well as the dynamics of its creation. We illustrate the collaborative reflective writing process and present the current edition of the manifesto itself. We assess immediate implications and applications of the articulated principles, compare these to assets, some now speak of a 'digital dark age' [4]. where. current practice, and suggest future steps.

I INTRODUCTION

It is clear that society is facing major sustainability challenges that require long-term, joined-up thinking. How do we loss, and accelerating climate change?

The discipline of Software Engineering (SE) has a major role to play in sustainability, because of the extent to which software systems mediate so many aspects of our lives. However, software practice has a tendency to focus only on the immediate effects and tangible benefits of software products and platforms. SE research has, for the most part, focused on increasing the reliability, efficiency and cost-benefit relation of software products for their owners, through a focus on processes, methods, models and techniques to create. verify and validate software systems and keep them operational.

The lack of long-term thinking in software engineering research and practice has been critiqued throughout the history of the discipline. For example, software maintenance and evolution were raised as concerns even at the very first software engineering conference [1]. Since then, efforts to increase the maintainability of software products and facilitate their evolution have often focused on improving architecture, decreasing lifecycle costs and managing technical debt [2]. Neumann has criticized the lack of long-term thinking over security considerations in SE [3]. For our digital information having discarded analog media in preference for digital, we now find that many of these assets become unreadable, due, in part, to the rapid lifecycles of software technology.

While progress has been made on design for maintainability of software per se, considerations that extend beyond sustain our technical infrastructures, given how much we rely immediate software product qualities and user benefits are on them for everything from communication and navigation generally treated as secondary concerns, optional qualities to through to storing health records, identifying security threats, be addressed only after the system under design has been and keeping the lights on? How do we sustain prosperity in shown to be a success in terms of technical and/or marketing society, given the erosion of trust in our political institutions criteria. The larger impact of software artefacts on society and a growing inequality in ownership of resources? And, and the natural environment is not routinely analyzed. But above all, how do we sustain the planetary systems that support by trading off longer-term sustainability questions for shorterlife on earth, in the face of accumulation of pollutants, species term success criteria, we accumulate threats to sustainability. We argue that this trade-off itself is unnecessary. As Neumann

- Individual. Mental and physical well-being, education, freedom, self-respect, mobility, agency.
- Social. Social equity, justice, employment, democracy.

Sustainability Design and Software: The Karlskrona Manifesto

Christoph Becker Faculty of Information University of Toronto Toronto, ON, Canada christoph.becker@utoronto.ca

Ruzanna Chitchyan University of Leicester Leicester, UK rc256@leicester.ac.uk

Leticia Duboc Dept of Computer Science Dept of Inf. & Computer Science Dept of Computer Science State Univ. of Rio de Janeiro Rio de Janeiro, Brazil leticia@ime.uerj.br

Colin C. Venters

School of Computing & Engineering

Steve Easterbrook University of Toronto Toronto, ON, Canada sme@cs.utoronto.ca

Birgit Penzenstadler Institute for Software Research University of California, Irvine Irvine, California, US bpenzens@uci.edu

systems. In the software engineering community, for example,

maintainability has been a concern for a long time. But too

often, these issues are treated in isolation from one another. Misperceptions among practitioners and research communities

persist, rooted in a lack of coherent understanding of sustain-

ability, and how it relates to software systems research and

practice. This article presents a cross-disciplinary initiative to

create a common ground and a point of reference for the

global community of research and practice in software and sustainability, to be used for effectively communicating key

issues, goals, values and principles of sustainability design for

software-intensive systems. The centrepiece of this effort is the

Karlskrona Manifesto for Sustainability Design, a vehicle for

a much needed conversation about sustainability within and

beyond the software community, and an articulation of the

fundamental principles underpinning design choices that affect sustainability. We describe the motivation for developing this

manifesto, including some considerations of the genre of the

manifesto as well as the dynamics of its creation. We illustrate the

collaborative reflective writing process and present the current

edition of the manifesto itself. We assess immediate implications

I. INTRODUCTION

It is clear that society is facing major sustainability chal-

lenges that require long-term, joined-up thinking. How do we

current practice, and suggest future steps.

loss, and accelerating climate change?

Norbert Seyff Dept of Informatics University of Zurich Zurich, Switzerland seyff@ifi.uzh.ch

University of Huddersfield Huddersfield, UK c.venters@hud.ac.uk Abstract-Sustainability has emerged as a broad concern for society. Many engineering disciplines have been grappling with challenges in how we sustain technical, social and ecological

The discipline of Software Engineering (SE) has a major role to play in sustainability, because of the extent to which software systems mediate so many aspects of our lives. However, software practice has a tendency to focus only on the immediate effects and tangible benefits of software products and platforms. SE research has, for the most part, focused on increasing the reliability, efficiency and cost-benefit relation of software products for their owners, through a focus on processes, methods, models and techniques to create. verify and validate software systems and keep them operational.

The lack of long-term thinking in software engineering research and practice has been critiqued throughout the history of the discipline. For example, software maintenance and evolution were raised as concerns even at the very first software engineering conference [1]. Since then, efforts to increase the maintainability of software products and facilitate their evolution have often focused on improving architecture, decreasing lifecycle costs and managing technical debt [2]. Neumann has criticized the lack of long-term thinking over security considerations in SE [3]. For our digital information and applications of the articulated principles, compare these to assets, some now speak of a 'digital dark age' [4]. where. having discarded analog media in preference for digital, we now find that many of these assets become unreadable, due, in part, to the rapid lifecycles of software technology.

While progress has been made on design for maintainability of software per se, considerations that extend beyond sustain our technical infrastructures, given how much we rely immediate software product qualities and user benefits are on them for everything from communication and navigation generally treated as secondary concerns, optional qualities to through to storing health records, identifying security threats, be addressed only after the system under design has been and keeping the lights on? How do we sustain prosperity in shown to be a success in terms of technical and/or marketing society, given the erosion of trust in our political institutions criteria. The larger impact of software artefacts on society and a growing inequality in ownership of resources? And, and the natural environment is not routinely analyzed. But above all, how do we sustain the planetary systems that support by trading off longer-term sustainability questions for shorterlife on earth, in the face of accumulation of pollutants, species term success criteria, we accumulate threats to sustainability We argue that this trade-off itself is unnecessary. As Neumann

- Individual. Mental and physical well-being, education, freedom, self-respect, mobility, agency.
- Social. Social equity, justice, employment, democracy.
- Technical. Maintenance, innovation, obsolescence, data integrity.

Sustainability Design and Software: The Karlskrona Manifesto

Christoph Becker Faculty of Information University of Toronto Toronto, ON, Canada christoph.becker@utoronto.ca

Ruzanna Chitchyan University of Leicester Leicester, UK rc256@leicester.ac.uk

Leticia Duboc Dept of Computer Science Dept of Inf. & Computer Science Dept of Computer Science State Univ. of Rio de Janeiro Rio de Janeiro, Brazil leticia@ime.uerj.br

Colin C. Venters

University of Huddersfield

Huddersfield, UK

c.venters@hud.ac.uk

Steve Easterbrook University of Toronto Toronto, ON, Canada sme@cs.utoronto.ca

Birgit Penzenstadler Institute for Software Research University of California, Irvine Irvine, California, US bpenzens@uci.edu

Norbert Seyff Dept of Informatics School of Computing & Engineering University of Zurich Zurich, Switzerland seyff@ifi.uzh.ch

Abstract-Sustainability has emerged as a broad concern for society. Many engineering disciplines have been grappling with challenges in how we sustain technical, social and ecological systems. In the software engineering community, for example, maintainability has been a concern for a long time. But too often, these issues are treated in isolation from one another. Misperceptions among practitioners and research communities persist, rooted in a lack of coherent understanding of sustainability, and how it relates to software systems research and practice. This article presents a cross-disciplinary initiative to create a common ground and a point of reference for the global community of research and practice in software and sustainability, to be used for effectively communicating key issues, goals, values and principles of sustainability design for software-intensive systems. The centrepiece of this effort is the Karlskrona Manifesto for Sustainability Design, a vehicle for a much needed conversation about sustainability within and beyond the software community, and an articulation of the fundamental principles underpinning design choices that affect sustainability. We describe the motivation for developing this manifesto, including some considerations of the genre of the manifesto as well as the dynamics of its creation. We illustrate the collaborative reflective writing process and present the current edition of the manifesto itself. We assess immediate implications current practice, and suggest future steps.

I. INTRODUCTION

It is clear that society is facing major sustainability challenges that require long-term, joined-up thinking. How do we through to storing health records, identifying security threats, be addressed only after the system under design has been society, given the erosion of trust in our political institutions criteria. The larger impact of software artefacts on society and a growing inequality in ownership of resources? And, and the natural environment is not routinely analyzed. But above all, how do we sustain the planetary systems that support by trading off longer-term sustainability questions for shorterlife on earth, in the face of accumulation of pollutants, species term success criteria, we accumulate threats to sustainability loss, and accelerating climate change?

The discipline of Software Engineering (SE) has a major role to play in sustainability, because of the extent to which software systems mediate so many aspects of our lives. However, software practice has a tendency to focus only on the immediate effects and tangible benefits of software products and platforms. SE research has, for the most part, focused on increasing the reliability, efficiency and cost-benefit relation of software products for their owners, through a focus on processes, methods, models and techniques to create. verify and validate software systems and keep them operational.

The lack of long-term thinking in software engineering research and practice has been critiqued throughout the history of the discipline. For example, software maintenance and evolution were raised as concerns even at the very first software engineering conference [1]. Since then, efforts to increase the maintainability of software products and facilitate their evolution have often focused on improving architecture, decreasing lifecycle costs and managing technical debt [2]. Neumann has criticized the lack of long-term thinking over security considerations in SE [3]. For our digital information and applications of the articulated principles, compare these to assets, some now speak of a 'digital dark age' [4]. where. having discarded analog media in preference for digital, we now find that many of these assets become unreadable, due, in part, to the rapid lifecycles of software technology.

While progress has been made on design for maintainability of software per se, considerations that extend beyond sustain our technical infrastructures, given how much we rely immediate software product qualities and user benefits are on them for everything from communication and navigation generally treated as secondary concerns, optional qualities to and keeping the lights on? How do we sustain prosperity in shown to be a success in terms of technical and/or marketing We argue that this trade-off itself is unnecessary. As Neumann

- Individual. Mental and physical well-being, education, freedom, self-respect, mobility, agency.
- Social. Social equity, justice, employment, democracy.
- Technical. Maintenance, innovation, obsolescence, data integrity.
- Economic. Wealth creation, prosperity, profitability, capital investment, income.

Sustainability Design and Software: The Karlskrona Manifesto

Christoph Becker Faculty of Information University of Toronto Toronto, ON, Canada christoph.becker@utoronto.ca

Ruzanna Chitchyan University of Leicester Leicester, UK rc256@leicester.ac.uk

Leticia Duboc Dept of Computer Science Dept of Inf. & Computer Science Dept of Computer Science State Univ. of Rio de Janeiro Rio de Janeiro, Brazil leticia@ime.uerj.br

Colin C. Venters

University of Huddersfield

Huddersfield, UK

c.venters@hud.ac.uk

University of Toronto Toronto, ON, Canada sme@cs.utoronto.ca

Steve Easterbrook

Birgit Penzenstadler Institute for Software Research University of California, Irvine Irvine, California, US bpenzens@uci.edu

Norbert Seyff Dept of Informatics School of Computing & Engineering University of Zurich Zurich, Switzerland seyff@ifi.uzh.ch

Abstract-Sustainability has emerged as a broad concern for society. Many engineering disciplines have been grappling with challenges in how we sustain technical, social and ecological systems. In the software engineering community, for example, maintainability has been a concern for a long time. But too often, these issues are treated in isolation from one another. Misperceptions among practitioners and research communities persist, rooted in a lack of coherent understanding of sustainability, and how it relates to software systems research and practice. This article presents a cross-disciplinary initiative to create a common ground and a point of reference for the global community of research and practice in software and sustainability, to be used for effectively communicating key issues, goals, values and principles of sustainability design for software-intensive systems. The centrepiece of this effort is the Karlskrona Manifesto for Sustainability Design, a vehicle for a much needed conversation about sustainability within and beyond the software community, and an articulation of the fundamental principles underpinning design choices that affect manifesto, including some considerations of the genre of the manifesto as well as the dynamics of its creation. We illustrate the collaborative reflective writing process and present the current edition of the manifesto itself. We assess immediate implications current practice, and suggest future steps.

I. INTRODUCTION

It is clear that society is facing major sustainability challife on earth, in the face of accumulation of pollutants, species term success criteria, we accumulate threats to sustainability loss, and accelerating climate change?

The discipline of Software Engineering (SE) has a major role to play in sustainability, because of the extent to which software systems mediate so many aspects of our lives. However, software practice has a tendency to focus only on the immediate effects and tangible benefits of software products and platforms. SE research has, for the most part, focused on increasing the reliability, efficiency and cost-benefit relation of software products for their owners, through a focus on processes, methods, models and techniques to create. verify and validate software systems and keep them operational.

The lack of long-term thinking in software engineering research and practice has been critiqued throughout the history of the discipline. For example, software maintenance and evolution were raised as concerns even at the very first software engineering conference [1]. Since then, efforts to increase the maintainability of software products and facilitate sustainability. We describe the motivation for developing this their evolution have often focused on improving architecture, decreasing lifecycle costs and managing technical debt [2]. Neumann has criticized the lack of long-term thinking over security considerations in SE [3]. For our digital information and applications of the articulated principles, compare these to assets, some now speak of a 'digital dark age' [4]. where. having discarded analog media in preference for digital, we now find that many of these assets become unreadable, due, in part, to the rapid lifecycles of software technology.

While progress has been made on design for maintainlenges that require long-term, joined-up thinking. How do we ability of software per se, considerations that extend beyond sustain our technical infrastructures, given how much we rely immediate software product qualities and user benefits are on them for everything from communication and navigation generally treated as secondary concerns, optional qualities to through to storing health records, identifying security threats, be addressed only after the system under design has been and keeping the lights on? How do we sustain prosperity in shown to be a success in terms of technical and/or marketing society, given the erosion of trust in our political institutions criteria. The larger impact of software artefacts on society and a growing inequality in ownership of resources? And, and the natural environment is not routinely analyzed. But above all, how do we sustain the planetary systems that support by trading off longer-term sustainability questions for shorter-We argue that this trade-off itself is unnecessary. As Neumann

- Individual. Mental and physical well-being, education, freedom, self-respect, mobility, agency.
- Social. Social equity, justice, employment, democracy.
- Technical. Maintenance, innovation, obsolescence, data integrity.
- Economic. Wealth creation, prosperity, profitability, capital investment, income.
- Environmental. Ecosystems, raw resources, climate change, food production, water, pollution, waste.

Sustainability Design and Software: The Karlskrona Manifesto

Christoph Becker Faculty of Information University of Toronto Toronto, ON, Canada christoph.becker@utoronto.ca

Ruzanna Chitchyan University of Leicester Leicester, UK rc256@leicester.ac.uk

Leticia Duboc Dept of Computer Science Dept of Inf. & Computer Science Dept of Computer Science State Univ. of Rio de Janeiro Rio de Janeiro, Brazil leticia@ime.uerj.br

Colin C. Venters

School of Computing & Engineering

University of Huddersfield

Huddersfield, UK

c.venters@hud.ac.uk

University of Toronto Toronto, ON, Canada sme@cs.utoronto.ca

Steve Easterbrook

Birgit Penzenstadler Institute for Software Research University of California, Irvine Irvine, California, US bpenzens@uci.edu

Norbert Seyff Dept of Informatics University of Zurich Zurich, Switzerland seyff@ifi.uzh.ch

Abstract-Sustainability has emerged as a broad concern for society. Many engineering disciplines have been grappling with challenges in how we sustain technical, social and ecological systems. In the software engineering community, for example, maintainability has been a concern for a long time. But too often, these issues are treated in isolation from one another. Misperceptions among practitioners and research communities persist, rooted in a lack of coherent understanding of sustainability, and how it relates to software systems research and practice. This article presents a cross-disciplinary initiative to create a common ground and a point of reference for the global community of research and practice in software and sustainability, to be used for effectively communicating key issues, goals, values and principles of sustainability design for software-intensive systems. The centrepiece of this effort is the Karlskrona Manifesto for Sustainability Design, a vehicle for a much needed conversation about sustainability within and beyond the software community, and an articulation of the fundamental principles underpinning design choices that affect manifesto, including some considerations of the genre of the manifesto as well as the dynamics of its creation. We illustrate the collaborative reflective writing process and present the current edition of the manifesto itself. We assess immediate implications current practice, and suggest future steps.

I. INTRODUCTION

It is clear that society is facing major sustainability chalthrough to storing health records, identifying security threats, be addressed only after the system under design has been and keeping the lights on? How do we sustain prosperity in shown to be a success in terms of technical and/or marketing society, given the erosion of trust in our political institutions criteria. The larger impact of software artefacts on society and a growing inequality in ownership of resources? And, and the natural environment is not routinely analyzed. But above all, how do we sustain the planetary systems that support by trading off longer-term sustainability questions for shorterlife on earth, in the face of accumulation of pollutants, species term success criteria, we accumulate threats to sustainability. loss, and accelerating climate change?

The discipline of Software Engineering (SE) has a major role to play in sustainability, because of the extent to which software systems mediate so many aspects of our lives. However, software practice has a tendency to focus only on the immediate effects and tangible benefits of software products and platforms. SE research has, for the most part, focused on increasing the reliability, efficiency and cost-benefit relation of software products for their owners, through a focus on processes, methods, models and techniques to create. verify and validate software systems and keep them operational.

The lack of long-term thinking in software engineering research and practice has been critiqued throughout the history of the discipline. For example, software maintenance and evolution were raised as concerns even at the very first software engineering conference [1]. Since then, efforts to increase the maintainability of software products and facilitate sustainability. We describe the motivation for developing this their evolution have often focused on improving architecture, decreasing lifecycle costs and managing technical debt [2]. Neumann has criticized the lack of long-term thinking over security considerations in SE [3]. For our digital information and applications of the articulated principles, compare these to assets, some now speak of a 'digital dark age' [4]. where. having discarded analog media in preference for digital, we now find that many of these assets become unreadable, due, in part, to the rapid lifecycles of software technology.

While progress has been made on design for maintainlenges that require long-term, joined-up thinking. How do we ability of software per se, considerations that extend beyond sustain our technical infrastructures, given how much we rely immediate software product qualities and user benefits are on them for everything from communication and navigation generally treated as secondary concerns, optional qualities to We argue that this trade-off itself is unnecessary. As Neumann

- Individual. Mental and physical well-being, education, freedom, self-respect, mobility, agency.
- Social. Social equity, justice, employment, democracy.
- Technical. Maintenance, innovation, obsolescence, data integrity.
- Economic. Wealth creation, prosperity, profitability, capital investment, income.
- Environmental. Ecosystems, raw resources, climate change, food production, water, pollution, waste.

Sustainability Design and Software: The Karlskrona Manifesto

Christoph Becker Faculty of Information University of Toronto Toronto, ON, Canada christoph.becker@utoronto.ca

Ruzanna Chitchyan University of Leicester Leicester, UK rc256@leicester.ac.uk

Leticia Duboc Dept of Computer Science Dept of Inf. & Computer Science Dept of Computer Science State Univ. of Rio de Janeiro Rio de Janeiro, Brazil leticia@ime.uerj.br

Colin C. Venters

School of Computing & Engineering

University of Huddersfield

Huddersfield, UK

c.venters@hud.ac.uk

Steve Easterbrook University of Toronto Toronto, ON, Canada sme@cs.utoronto.ca

Birgit Penzenstadler Institute for Software Research University of California, Irvine Irvine, California, US bpenzens@uci.edu

Norbert Seyff Dept of Informatics University of Zurich Zurich, Switzerland seyff@ifi.uzh.ch

Abstract-Sustainability has emerged as a broad concern for society. Many engineering disciplines have been grappling with challenges in how we sustain technical, social and ecological systems. In the software engineering community, for example, maintainability has been a concern for a long time. But too often, these issues are treated in isolation from one another. Misperceptions among practitioners and research communities persist, rooted in a lack of coherent understanding of sustainability, and how it relates to software systems research and practice. This article presents a cross-disciplinary initiative to create a common ground and a point of reference for the global community of research and practice in software and sustainability, to be used for effectively communicating key issues, goals, values and principles of sustainability design for software-intensive systems. The centrepiece of this effort is the Karlskrona Manifesto for Sustainability Design, a vehicle for a much needed conversation about sustainability within and beyond the software community, and an articulation of the fundamental principles underpinning design choices that affect sustainability. We describe the motivation for developing this manifesto, including some considerations of the genre of the manifesto as well as the dynamics of its creation. We illustrate the collaborative reflective writing process and present the current edition of the manifesto itself. We assess immediate implications current practice, and suggest future steps.

I. INTRODUCTION

It is clear that society is facing major sustainability challenges that require long-term, joined-up thinking. How do we ability of software per se, considerations that extend beyond through to storing health records, identifying security threats, be addressed only after the system under design has been and keeping the lights on? How do we sustain prosperity in shown to be a success in terms of technical and/or marketing society, given the erosion of trust in our political institutions criteria. The larger impact of software artefacts on society and a growing inequality in ownership of resources? And, and the natural environment is not routinely analyzed. But above all, how do we sustain the planetary systems that support by trading off longer-term sustainability questions for shorterlife on earth, in the face of accumulation of pollutants, species term success criteria, we accumulate threats to sustainability. loss, and accelerating climate change?

The discipline of Software Engineering (SE) has a major role to play in sustainability, because of the extent to which software systems mediate so many aspects of our lives. However, software practice has a tendency to focus only on the immediate effects and tangible benefits of software products and platforms. SE research has, for the most part, focused on increasing the reliability, efficiency and cost-benefit relation of software products for their owners, through a focus on processes, methods, models and techniques to create. verify and validate software systems and keep them operational.

The lack of long-term thinking in software engineering research and practice has been critiqued throughout the history of the discipline. For example, software maintenance and evolution were raised as concerns even at the very first software engineering conference [1]. Since then, efforts to increase the maintainability of software products and facilitate their evolution have often focused on improving architecture, decreasing lifecycle costs and managing technical debt [2]. Neumann has criticized the lack of long-term thinking over security considerations in SE [3]. For our digital information and applications of the articulated principles, compare these to assets, some now speak of a 'digital dark age' [4]. where. having discarded analog media in preference for digital, we now find that many of these assets become unreadable, due, in part, to the rapid lifecycles of software technology.

While progress has been made on design for maintainsustain our technical infrastructures, given how much we rely immediate software product qualities and user benefits are on them for everything from communication and navigation generally treated as secondary concerns, optional qualities to We argue that this trade-off itself is unnecessary. As Neumann

"How Was Your Weekend?" Software Development Teams Working From Home During COVID-19

Courtney Miller^{*}, Paige Rodeghero[‡], Margaret-Anne Storey[§], Denae Ford[¶] and Thomas Zimmermann[∥]

* New College of Florida, FL, USA. Email: courtney.miller17@ncf.edu

[‡] Clemson University, SC, USA. Email: prodegh@clemson.edu

[§] University of Victoria, BC, Canada. Email: mstorey@uvic.ca

[¶] Microsoft Research, WA, USA. Email: denae@microsoft.com

Microsoft Research, WA, USA. Email: tzimmer@microsoft.com

Abstract-The mass shift to working at home during the COVID-19 pandemic radically changed the way many software development teams collaborate and communicate. To investigate how team culture and team productivity may also have been affected, we conducted two surveys at a large software company. The first, an exploratory survey during the early months of the pandemic with 2,265 developer responses, revealed that many developers faced challenges reaching milestones and that their team productivity had changed. We also found through qualitative analysis that important team culture factors such as communication and social connection had been affected. For example, the simple phrase "How was your weekend?" had become a subtle way to show peer support.

In our second survey, we conducted a quantitative analysis of the team cultural factors that emerged from our first survey to inderstand the prevalence of the reported changes. From 608 developer responses, we found that 74% of these respondents missed social interactions with colleagues and 51% reported a decrease in their communication ease with colleagues. We used data from the second survey to build a regression model to identify important team culture factors for modeling team productivity. We found that the ability to brainstorm with colleagues, difficulty communicating with colleagues, and satisfaction with interactions from social activities are important factors that are associated with how developers report their software development team's productivity. Our findings inform how managers and leaders in large software companies can support sustained team productivity during times of crisis and beyond.

I. INTRODUCTION

As COVID-19 spread globally, many companies, including Google, Microsoft, Twitter, Amazon, and Facebook, instructed their software developers to go home and work remotely [1]. Entire software development teams that used to work predominantly in-person suddenly had to pivot their work and quickly establish effective remote collaboration and communication.

affects productivity [2], [3]. While regular WFH is not the including communication, camaraderie, and team cohesion [6], same as WFH during a pandemic, the COVID-19 pandemic [7]. We hypothesize these factors are at particular risk of has created a natural experiment for researchers to study being disrupted by this unexpected shift to WFH. Thus, we

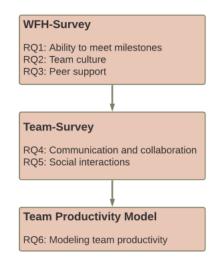


Fig. 1. Methodology Flow Chart

are recent papers that already began investigating the impacts of this unique work setting. Bao et al. performed a case study using automated trace data, along with other metrics, to determine how productivity has been affected. They found that productivity was affected in various ways depending on the productivity metrics used [4]. Ralph et al. performed an international large-scale questionnaire survey of developer well-being and productivity and found that productivity and well-being are closely related, and both are currently suffering [5]. As insightful as these works are at providing empirical evidence of factors affecting individual developer productivity, they lack a deeper understanding of a major responsibility of industrial software developers—collaborating with a team.

In our work, we identify factors that affect software de-Prior research has studied how working from home (WFH) velopment team productivity such as team culture factors, nvestigated the effects of WFH on teams and answered th

(Miller et al., 2021) Preprint: https://arxiv.org/pdf/2101.05877.pdf

 \mathbf{C} 20 0 S \mathbf{O} ∞ S 0 _ 0 \sim Xiv

Survey with 600+ developers

"How Was Your Weekend?" Software Development Teams Working From Home During COVID-19

Courtney Miller^{*}, Paige Rodeghero[‡], Margaret-Anne Storey[§], Denae Ford[¶] and Thomas Zimmermann[∥]

* New College of Florida, FL, USA. Email: courtney.miller17@ncf.edu

[‡] Clemson University, SC, USA. Email: prodegh@clemson.edu

[§] University of Victoria, BC, Canada. Email: mstorey@uvic.ca

[¶] Microsoft Research, WA, USA. Email: denae@microsoft.com

Microsoft Research, WA, USA. Email: tzimmer@microsoft.com

Abstract-The mass shift to working at home during the COVID-19 pandemic radically changed the way many software development teams collaborate and communicate. To investigate how team culture and team productivity may also have been affected, we conducted two surveys at a large software company. The first, an exploratory survey during the early months of the pandemic with 2,265 developer responses, revealed that many developers faced challenges reaching milestones and that their team productivity had changed. We also found through qualitative analysis that important team culture factors such as communication and social connection had been affected. For example, the simple phrase "How was your weekend?" had become a subtle way to show peer support.

In our second survey, we conducted a quantitative analysis of the team cultural factors that emerged from our first survey to inderstand the prevalence of the reported changes. From 608 developer responses, we found that 74% of these respondents missed social interactions with colleagues and 51% reported a decrease in their communication ease with colleagues. We used data from the second survey to build a regression model to identify important team culture factors for modeling team productivity. We found that the ability to brainstorm with colleagues, difficulty communicating with colleagues, and satisfaction with interactions from social activities are important factors that are associated with how developers report their software development team's productivity. Our findings inform how managers and leaders in large software companies can support sustained team productivity during times of crisis and beyond.

I. INTRODUCTION

As COVID-19 spread globally, many companies, including Google, Microsoft, Twitter, Amazon, and Facebook, instructed their software developers to go home and work remotely [1]. Entire software development teams that used to work predominantly in-person suddenly had to pivot their work and quickly establish effective remote collaboration and communication.

affects productivity [2], [3]. While regular WFH is not the including communication, camaraderie, and team cohesion [6], same as WFH during a pandemic, the COVID-19 pandemic [7]. We hypothesize these factors are at particular risk of has created a natural experiment for researchers to study being disrupted by this unexpected shift to WFH. Thus, we

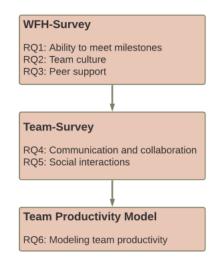


Fig. 1. Methodology Flow Chart

are recent papers that already began investigating the impacts of this unique work setting. Bao et al. performed a case study using automated trace data, along with other metrics, to determine how productivity has been affected. They found that productivity was affected in various ways depending on the productivity metrics used [4]. Ralph et al. performed an international large-scale questionnaire survey of developer well-being and productivity and found that productivity and well-being are closely related, and both are currently suffering [5]. As insightful as these works are at providing empirical evidence of factors affecting individual developer productivity, they lack a deeper understanding of a major responsibility of industrial software developers-collaborating with a team.

In our work, we identify factors that affect software de-Prior research has studied how working from home (WFH) velopment team productivity such as team culture factors, nvestigated the effects of WFH on teams and answered th

(Miller et al., 2021) Preprint: https://arxiv.org/pdf/2101.05877.pdf

 \mathbf{C} 20 0 S \mathbf{O} ∞ S \bigcirc 0 \sim Xiv

- Survey with 600+ developers
- Pandemic remote work isn't remote work.

"How Was Your Weekend?" Software Development Teams Working From Home During COVID-19

Courtney Miller^{*}, Paige Rodeghero[‡], Margaret-Anne Storey[§], Denae Ford[¶] and Thomas Zimmermann[∥]

* New College of Florida, FL, USA. Email: courtney.miller17@ncf.edu

[‡] Clemson University, SC, USA. Email: prodegh@clemson.edu

[§] University of Victoria, BC, Canada. Email: mstorey@uvic.ca

[¶] Microsoft Research, WA, USA. Email: denae@microsoft.com

Microsoft Research, WA, USA. Email: tzimmer@microsoft.com

Abstract-The mass shift to working at home during the COVID-19 pandemic radically changed the way many software development teams collaborate and communicate. To investigate how team culture and team productivity may also have been affected, we conducted two surveys at a large software company. The first, an exploratory survey during the early months of the pandemic with 2,265 developer responses, revealed that many developers faced challenges reaching milestones and that their team productivity had changed. We also found through qualitative analysis that important team culture factors such as communication and social connection had been affected. For example, the simple phrase "How was your weekend?" had become a subtle way to show peer support.

In our second survey, we conducted a quantitative analysis of the team cultural factors that emerged from our first survey to inderstand the prevalence of the reported changes. From 608 developer responses, we found that 74% of these respondents missed social interactions with colleagues and 51% reported a decrease in their communication ease with colleagues. We used data from the second survey to build a regression model to identify important team culture factors for modeling team productivity. We found that the ability to brainstorm with colleagues, difficulty communicating with colleagues, and satisfaction with interactions from social activities are important factors that are associated with how developers report their software development team's productivity. Our findings inform how managers and leaders in large software companies can support sustained team productivity during times of crisis and beyond.

I. INTRODUCTION

As COVID-19 spread globally, many companies, including Google, Microsoft, Twitter, Amazon, and Facebook, instructed their software developers to go home and work remotely [1]. Entire software development teams that used to work predominantly in-person suddenly had to pivot their work and quickly establish effective remote collaboration and communication.

affects productivity [2], [3]. While regular WFH is not the including communication, camaraderie, and team cohesion [6], same as WFH during a pandemic, the COVID-19 pandemic [7]. We hypothesize these factors are at particular risk of has created a natural experiment for researchers to study being disrupted by this unexpected shift to WFH. Thus, we

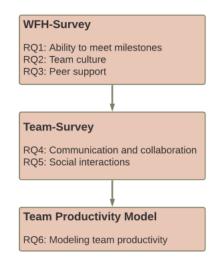


Fig. 1. Methodology Flow Chart

are recent papers that already began investigating the impacts of this unique work setting. Bao et al. performed a case study using automated trace data, along with other metrics, to determine how productivity has been affected. They found that productivity was affected in various ways depending on the productivity metrics used [4]. Ralph et al. performed an international large-scale questionnaire survey of developer well-being and productivity and found that productivity and well-being are closely related, and both are currently suffering [5]. As insightful as these works are at providing empirical evidence of factors affecting individual developer productivity, they lack a deeper understanding of a major responsibility of industrial software developers-collaborating with a team.

In our work, we identify factors that affect software de-Prior research has studied how working from home (WFH) velopment team productivity such as team culture factors nvestigated the effects of WFH on teams and answered th

(Miller et al., 2021) Preprint: https://arxiv.org/pdf/2101.05877.pdf

 \mathbf{C} 20 0 S \mathbf{O} ∞ S \bigcirc 0 \sim Xiv

- Survey with 600+ developers
- Pandemic remote work isn't remote work.
- *"We have lost somewhere between 20%-40%"* effectiveness in use of time. In order to keep up, people are working longer hours. We are starting to see burnout." (participant 1384)

"How Was Your Weekend?" Software Development Teams Working From Home During COVID-19

Courtney Miller^{*}, Paige Rodeghero[‡], Margaret-Anne Storey[§], Denae Ford[¶] and Thomas Zimmermann[∥]

* New College of Florida, FL, USA. Email: courtney.miller17@ncf.edu

[‡] Clemson University, SC, USA. Email: prodegh@clemson.edu

[§] University of Victoria, BC, Canada. Email: mstorey@uvic.ca

[¶] Microsoft Research, WA, USA. Email: denae@microsoft.com

Microsoft Research, WA, USA. Email: tzimmer@microsoft.com

Abstract-The mass shift to working at home during the COVID-19 pandemic radically changed the way many software development teams collaborate and communicate. To investigate how team culture and team productivity may also have been affected, we conducted two surveys at a large software company. The first, an exploratory survey during the early months of the pandemic with 2,265 developer responses, revealed that many developers faced challenges reaching milestones and that their team productivity had changed. We also found through qualitative analysis that important team culture factors such as communication and social connection had been affected. For example, the simple phrase "How was your weekend?" had become a subtle way to show peer support.

202

0

LT)

5

 \mathbf{O}

 ∞

 \bigcirc

0

 \sim

Xiv

In our second survey, we conducted a quantitative analysis of the team cultural factors that emerged from our first survey to inderstand the prevalence of the reported changes. From 608 developer responses, we found that 74% of these respondents missed social interactions with colleagues and 51% reported a decrease in their communication ease with colleagues. We used data from the second survey to build a regression model to identify important team culture factors for modeling team productivity. We found that the ability to brainstorm with colleagues, difficulty communicating with colleagues, and satisfaction with interactions from social activities are important factors that are associated with how developers report their software development team's productivity. Our findings inform how managers and leaders in large software companies can support sustained team productivity during times of crisis and beyond.

I. INTRODUCTION

As COVID-19 spread globally, many companies, including Google, Microsoft, Twitter, Amazon, and Facebook, instructed their software developers to go home and work remotely [1]. Entire software development teams that used to work predominantly in-person suddenly had to pivot their work and quickly establish effective remote collaboration and communication.

affects productivity [2], [3]. While regular WFH is not the including communication, camaraderie, and team cohesion [6], same as WFH during a pandemic, the COVID-19 pandemic [7]. We hypothesize these factors are at particular risk of has created a natural experiment for researchers to study being disrupted by this unexpected shift to WFH. Thus, we

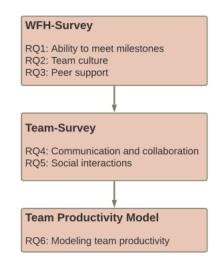


Fig. 1. Methodology Flow Chart

are recent papers that already began investigating the impacts of this unique work setting. Bao et al. performed a case study using automated trace data, along with other metrics, to determine how productivity has been affected. They found that productivity was affected in various ways depending on the productivity metrics used [4]. Ralph et al. performed an international large-scale questionnaire survey of developer well-being and productivity and found that productivity and well-being are closely related, and both are currently suffering [5]. As insightful as these works are at providing empirical evidence of factors affecting individual developer productivity, they lack a deeper understanding of a major responsibility of industrial software developers-collaborating with a team.

In our work, we identify factors that affect software de-Prior research has studied how working from home (WFH) velopment team productivity such as team culture factors, nvestigated the effects of WFH on teams and answered th

(Miller et al., 2021) Preprint: https://arxiv.org/pdf/2101.05877.pdf

- Survey with 600+ developers
- Pandemic remote work isn't remote work.
- *"We have lost somewhere between 20%-40%"* effectiveness in use of time. In order to keep up, people are working longer hours. We are starting to see burnout." (participant 1384)
- A few proposed practices: Build and maintain team culture. Include social activities as part of "work." Be mindful of other people's time. Actively work to be inclusive.

"How Was Your Weekend?" Software Development Teams Working From Home During COVID-19

Courtney Miller^{*}, Paige Rodeghero[‡], Margaret-Anne Storey[§], Denae Ford[¶] and Thomas Zimmermann[∥]

* New College of Florida, FL, USA. Email: courtney.miller17@ncf.edu

[‡] Clemson University, SC, USA. Email: prodegh@clemson.edu

[§] University of Victoria, BC, Canada. Email: mstorey@uvic.ca

[¶] Microsoft Research, WA, USA. Email: denae@microsoft.com

Microsoft Research, WA, USA, Email: tzimmer@microsoft.com

Abstract-The mass shift to working at home during the COVID-19 pandemic radically changed the way many software development teams collaborate and communicate. To investigate how team culture and team productivity may also have been affected, we conducted two surveys at a large software company. The first, an exploratory survey during the early months of the pandemic with 2,265 developer responses, revealed that many developers faced challenges reaching milestones and that their team productivity had changed. We also found through qualitative analysis that important team culture factors such as communication and social connection had been affected. For example, the simple phrase "How was your weekend?" had become a subtle way to show peer support.

202

0

LT)

5

 \mathbf{O}

 ∞

0

0

 \mathbf{C}

arXiv

In our second survey, we conducted a quantitative analysis of the team cultural factors that emerged from our first survey to inderstand the prevalence of the reported changes. From 608 developer responses, we found that 74% of these respondents missed social interactions with colleagues and 51% reported a decrease in their communication ease with colleagues. We used data from the second survey to build a regression model to identify important team culture factors for modeling team productivity. We found that the ability to brainstorm with colleagues, difficulty communicating with colleagues, and satisfaction with interactions from social activities are important factors that are associated with how developers report their software development team's productivity. Our findings inform how managers and leaders in large software companies can support sustained team productivity during times of crisis and beyond.

I. INTRODUCTION

As COVID-19 spread globally, many companies, including Google, Microsoft, Twitter, Amazon, and Facebook, instructed their software developers to go home and work remotely [1]. Entire software development teams that used to work predominantly in-person suddenly had to pivot their work and quickly establish effective remote collaboration and communication.

affects productivity [2], [3]. While regular WFH is not the including communication, camaraderie, and team cohesion [6]. same as WFH during a pandemic, the COVID-19 pandemic [7]. We hypothesize these factors are at particular risk of has created a natural experiment for researchers to study being disrupted by this unexpected shift to WFH. Thus, we

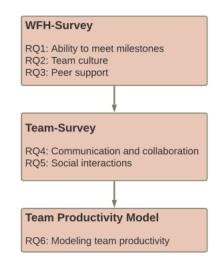
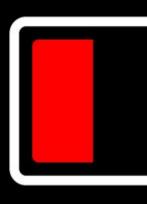
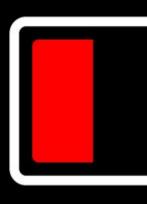


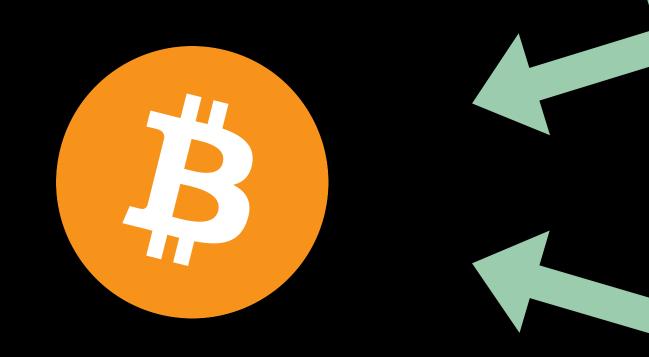
Fig. 1. Methodology Flow Chart


are recent papers that already began investigating the impacts of this unique work setting. Bao et al. performed a case study using automated trace data, along with other metrics, to determine how productivity has been affected. They found that productivity was affected in various ways depending on the productivity metrics used [4]. Ralph et al. performed an international large-scale questionnaire survey of developer well-being and productivity and found that productivity and well-being are closely related, and both are currently suffering [5]. As insightful as these works are at providing empirical evidence of factors affecting individual developer productivity, they lack a deeper understanding of a major responsibility of industrial software developers-collaborating with a team.

In our work, we identify factors that affect software de-Prior research has studied how working from home (WFH) velopment team productivity such as team culture factors, vestigated the effects of WFH on teams and answ


(Miller et al., 2021) Preprint: https://arxiv.org/pdf/2101.05877.pdf

Green Software Engineering


• What is it?

- No central authority consensus algorithm.
- One transaction multiple agents to compute a hash that validates the transaction.
- Several discussions regarding social sustainability.
- How does bitcoin transactions compare to traditional centralised transactions w.r.t. environmental impact?

Bitcoin example

- Problem with e-waste.

https://digiconomist.net/bitcoin-energy-consumption https://cbeci.org/cbeci/comparisons

Bitcoin example

Annual energy consumption equivalent to Chile's (77.78 TWh).

52K hours YouTube

780K VISA

higher than the Netherlands' (120TWh s > 111TWh) Annual energy consumption equivalent to Chile's (77.78 TWh).

- Problem with e-waste.

https://digiconomist.net/bitcoin-energy-consumption https://cbeci.org/cbeci/comparisons

Bitcoin example

52K hours YouTube

780K VISA

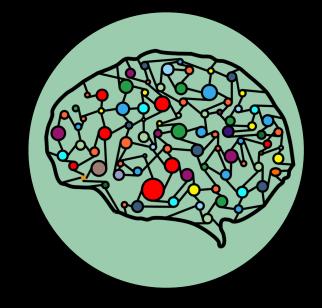
higher than the Netherlands' (120TWh s > 111TWh) Annual energy consumption equivalent to Chile's (77.78 TWh).

- Problem with e-waste.

https://digiconomist.net/bitcoin-energy-consumption https://cbeci.org/cbeci/comparisons

Bitcoin example

52K hours YouTube


780K VISA

Training Neural Networks

- Deep Learning in NLP.
- Training and tuning an NLP model is comparable to the CO2 emission of a normal car throughout its lifetime.
- Researchers should prioritize developing efficient models and hardware.

(Strubell, 2019)

Energy and Policy Considerations for Deep Learning in NLP

Emma Strubell Ananya Ganesh Andrew McCallum College of Information and Computer Sciences University of Massachusetts Amherst {strubell, aganesh, mccallum}@cs.umass.edu

Abstract

Recent progress in hardware and methodology for training neural networks has ushered in a new generation of large networks trained on abundant data. These models have obtained notable gains in accuracy across many NLP tasks. However, these accuracy improvements depend on the availability of exceptionally large computational resources that necessitate similarly substantial energy consumption. As a result these models are costly to train and develop, both financially, due to the cost of hardware and electricity or cloud compute time, and environmentally, due to the carbon footprint required to fuel modern tensor processing hardware. In this paper we bring this issue to the attention of NLP researchers by quantifying the approximate financial and environmental costs of training a variety of recently successful neural network models for NLP. Based on these findings, we propose actionable recommendations to reduce costs and improve equity in NLP research and practice.

1 Introduction

Advances in techniques and hardware for training deep neural networks have recently enabled impressive accuracy improvements across many fundamental NLP tasks (Bahdanau et al., 2015; Luong et al., 2015; Dozat and Manning, 2017; Vaswani et al., 2017), with the most computationally-hungry models obtaining the highest scores (Peters et al., 2018; Devlin et al., 2019; Radford et al., 2019; So et al., 2019). As a result, training a state-of-the-art model now requires substantial computational resources which demand considerable energy, along with the associated financial and environmental costs. Re- deter escalating rates of natural disaster, and based these costs by thousands of times by requiring retraining to experiment with model architectures and hyperparameters. Whereas a decade ago most //bit.ly/2Qbr0w1.

Consumption	CO ₂ e (lbs)
Air travel, 1 person, NY \leftrightarrow SF	1984
Human life, avg, 1 year	11,023
American life, avg, 1 year	36,156
Car, avg incl. fuel, 1 lifetime	126,000
Training one model (GPU)	

maning one mouth (or e)	
NLP pipeline (parsing, SRL)	39
w/ tuning & experiments	78,468
Transformer (big)	192
w/ neural arch. search	626,155

Table 1: Estimated CO₂ emissions from training common NLP models, compared to familiar consumption.¹

NLP models could be trained and developed on a commodity laptop or server, many now require multiple instances of specialized hardware such as GPUs or TPUs, therefore limiting access to these highly accurate models on the basis of finances.

Even when these expensive computational resources are available, model training also incurs a substantial cost to the environment due to the energy required to power this hardware for weeks or months at a time. Though some of this energy may come from renewable or carbon credit-offset resources, the high energy demands of these models are still a concern since (1) energy is not currently derived from carbon-neural sources in many locations, and (2) when renewable energy is available, it is still limited to the equipment we have to produce and store it, and energy spent training a neural network might better be allocated to heating a family's home. It is estimated that we must cut carbon emissions by half over the next decade to search and development of new models multiplies on the estimated CO₂ emissions listed in Table 1,

3645

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3645–3650 Florence, Italy, July 28 - August 2, 2019. ©2019 Association for Computational Linguistics

¹Sources: (1) Air travel and per-capita consumption: https://bit.ly/2Hw0xWc; (2) car lifetime: https:

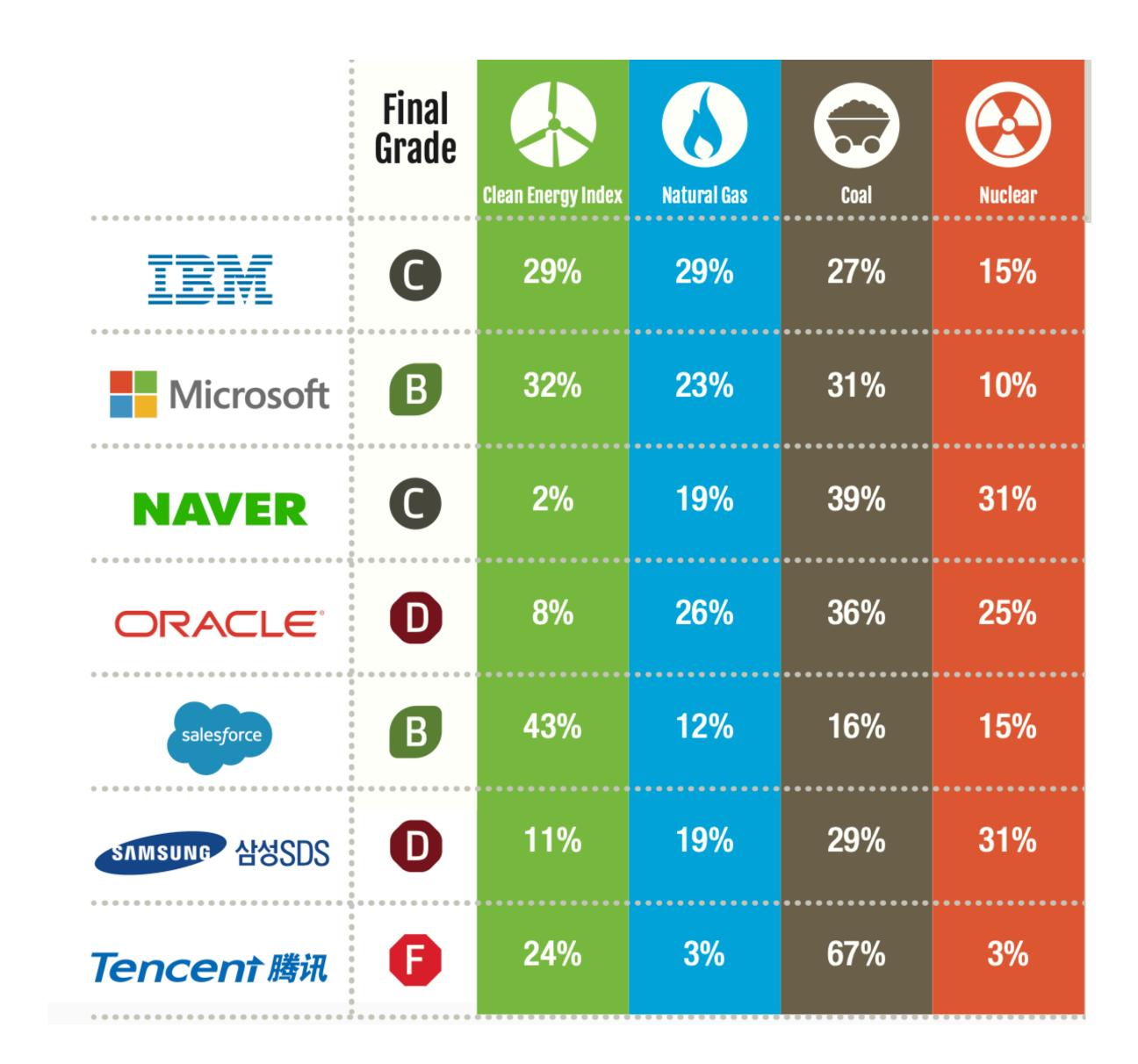
Green Field

- There is no awareness of the energy consumption.
- developers.
- E.g, watch a movie in streaming platforms.

 There is little information about the energy consumption of our decisions and practices as software architects and

Little is known about our footprint as users and developers.

Greenpeace Report


- IT sector consumes 7% of global electricity (2017).
- "The continued lack of transparency by many companies" regarding their energy demand and the supply of *electricity* powering their data centers remains a significant threat to the sector's long-term sustainability."
- Report provides an analysis of environmental sustainability of tech providers in different angles. Transparency, Commitment, **Energy Efficiency, Renewable Procurement, Advocacy.**

Gary Cook, Jude Lee, Tamina Tsai, Ada Kongn, John Deans, Brian Johnson, Elizabeth Jardim, and Brian Johnson. 2017. Clicking Clean: Who is winning the race to build a green internet? Technical report, Greenpeace.

	Final Grade	Clean Energy Index	Natural Gas	Coal	Nuclear
Adobe	B	23%	37%	23%	11%
EZ Alibaba.com	D	24%	3%	67%	3%
web services	C	17%	24%	30%	26%
	A	83%	4%	5%	5%
Bai認首度	Ø	24%	3%	67%	3%
F	A	67%	7%	15%	9%
Google	A	56%	14%	15%	10%
b	C	50%	17%	27%	5%

(Greenpeace, 2017)

Video Streaming

	Final Grade	Clean Energy Index	Natural Gas	Coal	Nuclear
Afreeca.com	Ø	2%	19%	39%	31%
Amazon Prime	C	17%	24%	30%	26%
HBO	D	22%	20%	25%	25%
Hulu	Ø	20%	30%	29%	20%
Netflix	D	17%	24%	30%	26%
Pooq.co.kr	Ø	2%	19%	39%	31%
Vevo	Ø	27%	15%	32%	26%
Vimeo	D	47%	13%	20%	19%
YouTube	A	56%	15%	14%	10%

Music/Audio Streaming

	Final Grade	Clean Energy Index	Natural Gas	Coal	Nuclear
iTunes	A	83%	4%	5%	5%
NPR	Ø	17%	24%	30%	26%
Pandora	Ð	13%	32%	20%	27%
SoundCloud	Ø	17%	24%	30%	26%
Spotify	D	56%	15%	14%	10%
Podbbang	Ø	2%	19%	39%	31%

How to check for green hosts

THE GREEN WEB FOUNDATION DATASET BROWSER

home / daily_snapshot

greendomain

1,448,277 rows

• = • - column -

Apply

View and edit SQL

This data as json, <u>CSV</u> (advanced)

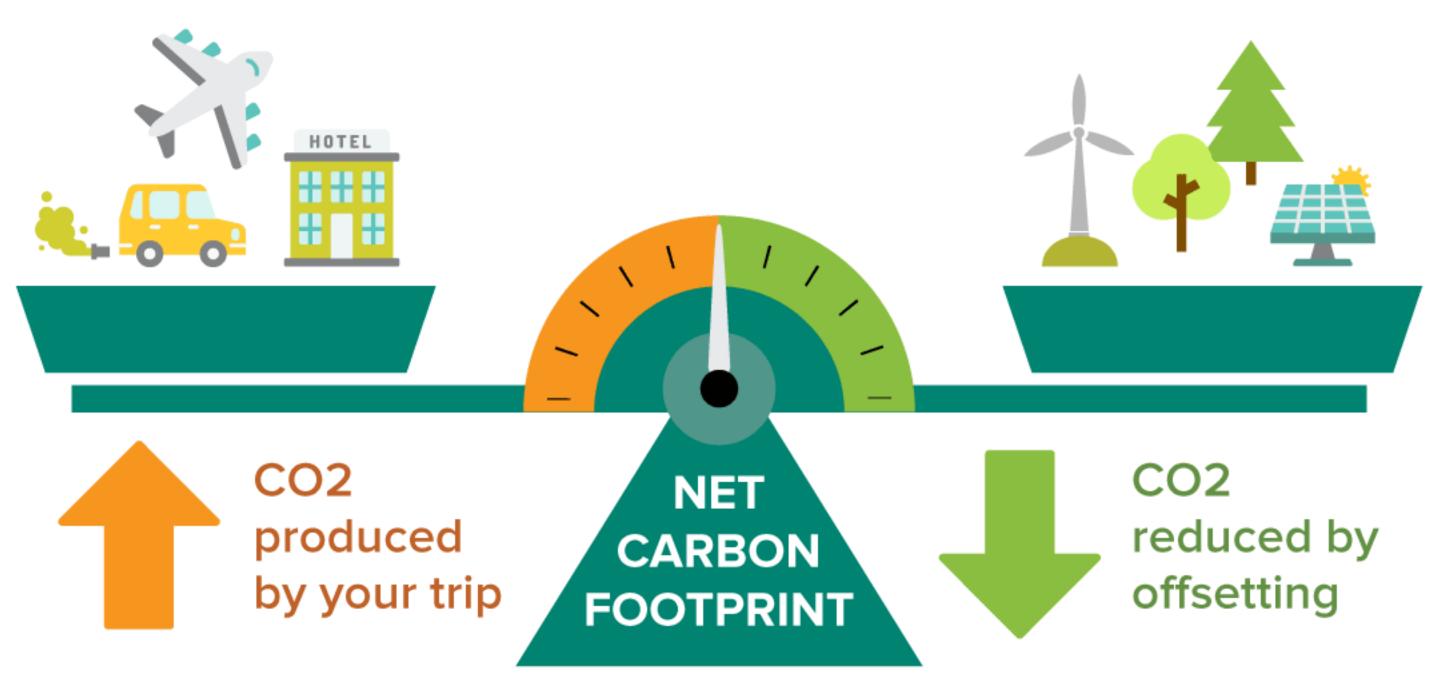
Suggested facets: modified (date)

id 🔻	url	hosted_by	hosted_by_website	partner	green	hosted_by_id	modified
121	www.koeka.com	LeaseWeb	www.leaseweb.com		1	156	2020-01- 24T12:04:28
292	pexels.com	Cloudflare	www.cloudflare.com		1	779	2021-02- 19T21:03:57
302	videos.pexels.com	Cloudflare	www.cloudflare.com		1	779	2021-01- 30T19:53:45
303	morguefile.com	Cloudflare	www.cloudflare.com		1	779	2021-02- 10T22:29:52
331	www.mondovo.com	Cloudflare	www.cloudflare.com		1	779	2021-02- 16T15:18:55
olay a m	enu	Coogle Inc	www.google.com		4	505	2021 01

datasets.thegreenwebfoundation.org

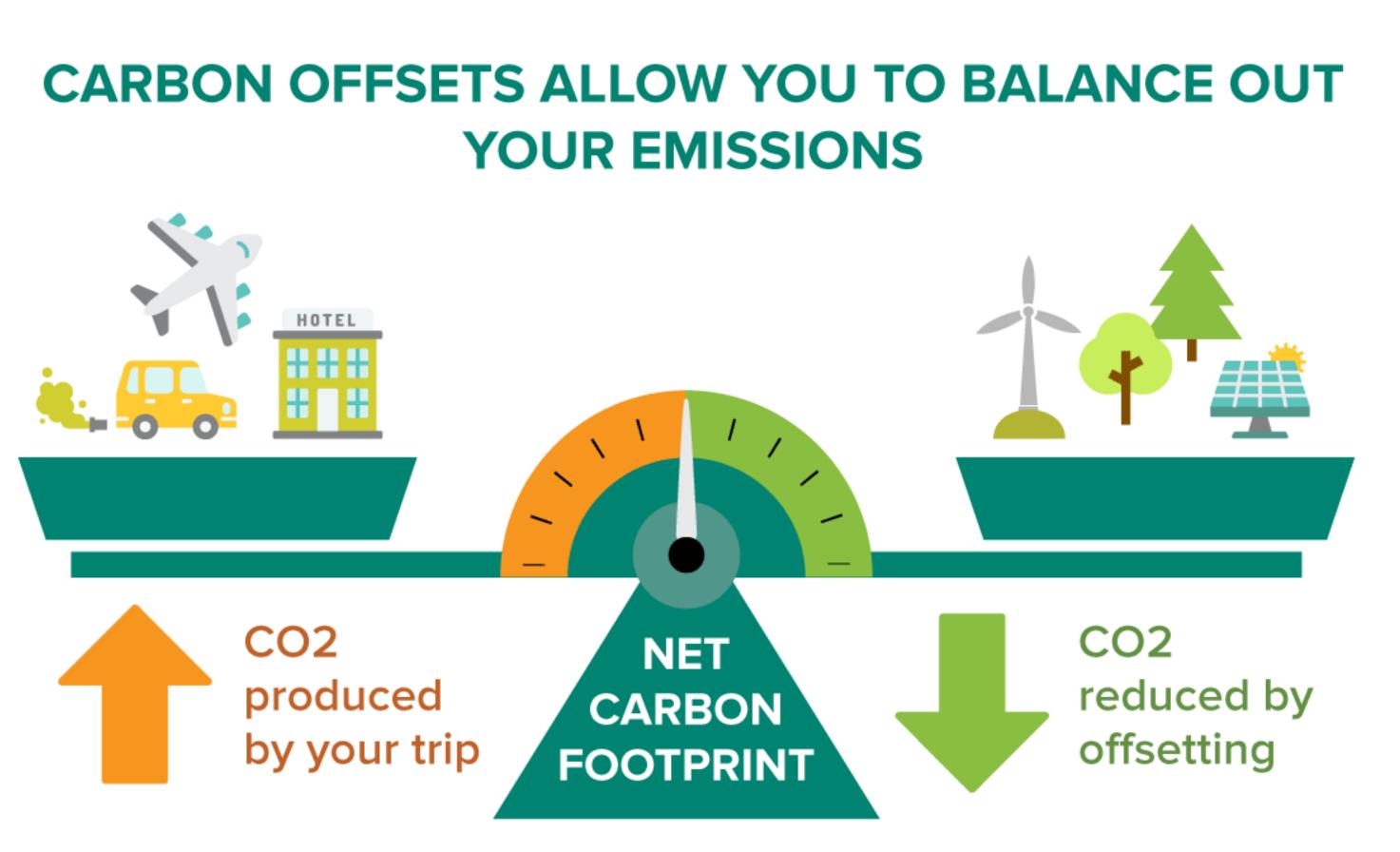
- Greendomain database. Provided by The Green Web Foundation.

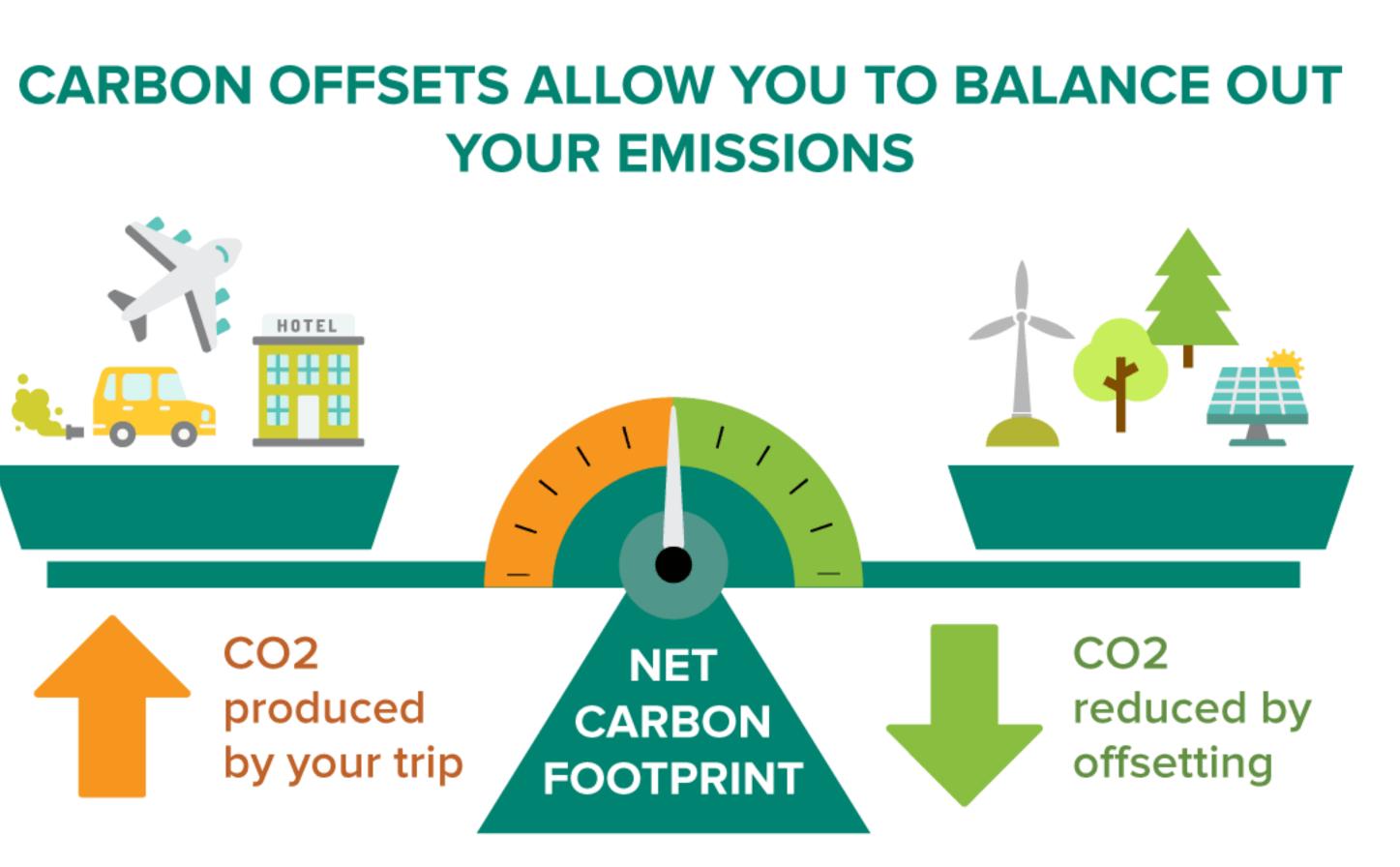
	C	1000		
	\cup			

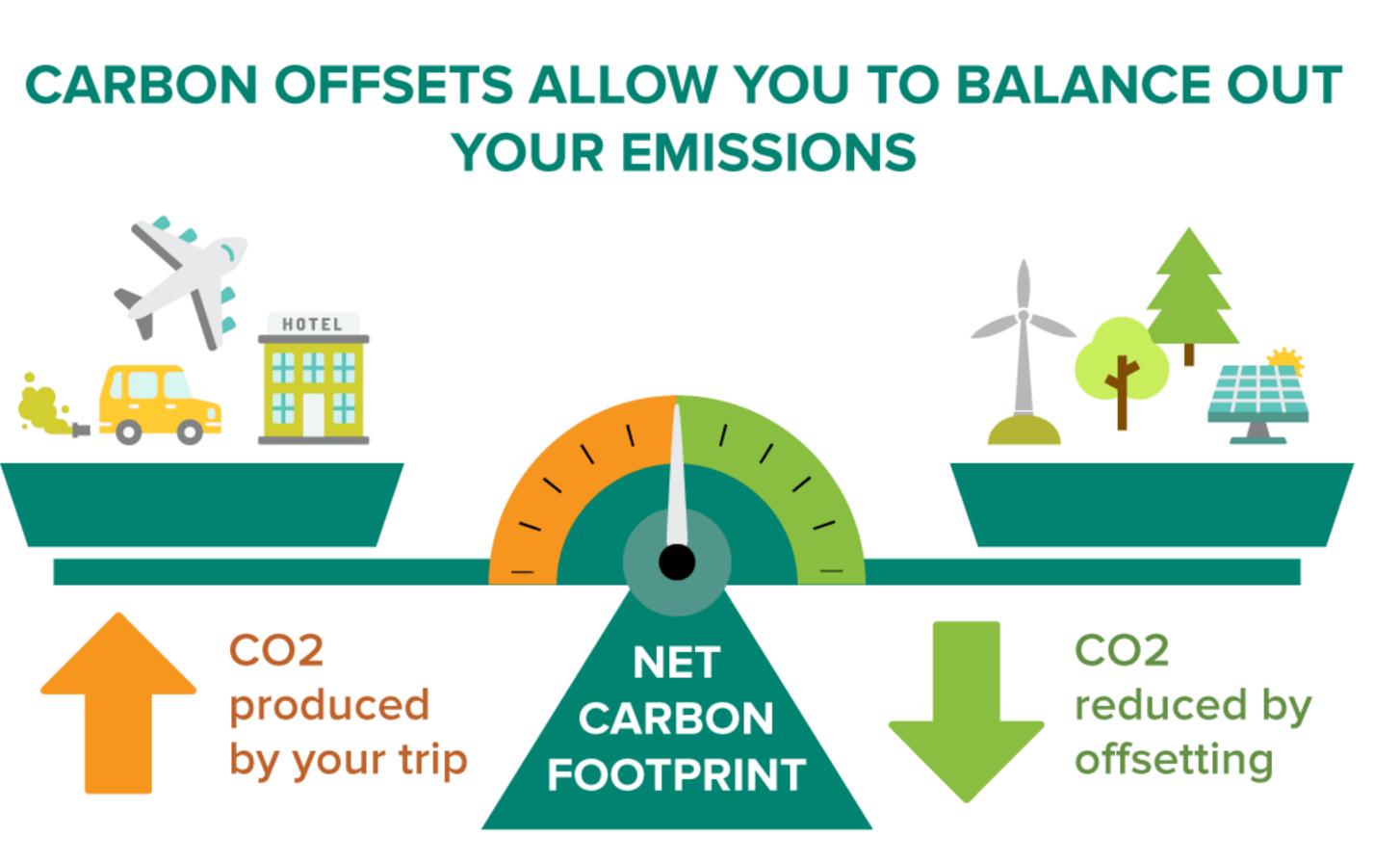

0 1 0 +

About

FOUNDATION


<u>https://datasets.thegreenwebfoundation.org/daily_snapshot/greendomain</u>


CARBON OFFSETS ALLOW YOU TO BALANCE OUT YOUR EMISSIONS



- Not really: Carbon offset is an easy strategy that allows large polluting services to simply throw money at the moment.
- It practice, it boils down to creating monocultures of trees in underdeveloped countries.

Checkpoint 1

- From all the things you do as a Computer Science expert, name a few that you find to be carbon intensive.
- Add a sticky note with a brief answer (200 max). Add your name in the end.
- Upvote other answers using the thumbs up 👍 emoji.
- Some sticky notes will be selected for discussion. - What is the trade-off between carbon intensity and usefulness?

- How could we measure?

Miro board: <u>https://edu.nl/8b639</u>

Zoom meetings with video. There is a continuous lowlatency internet connection that transfers large amounts of video data. Luís Cruz

de 1

Execution

Execution

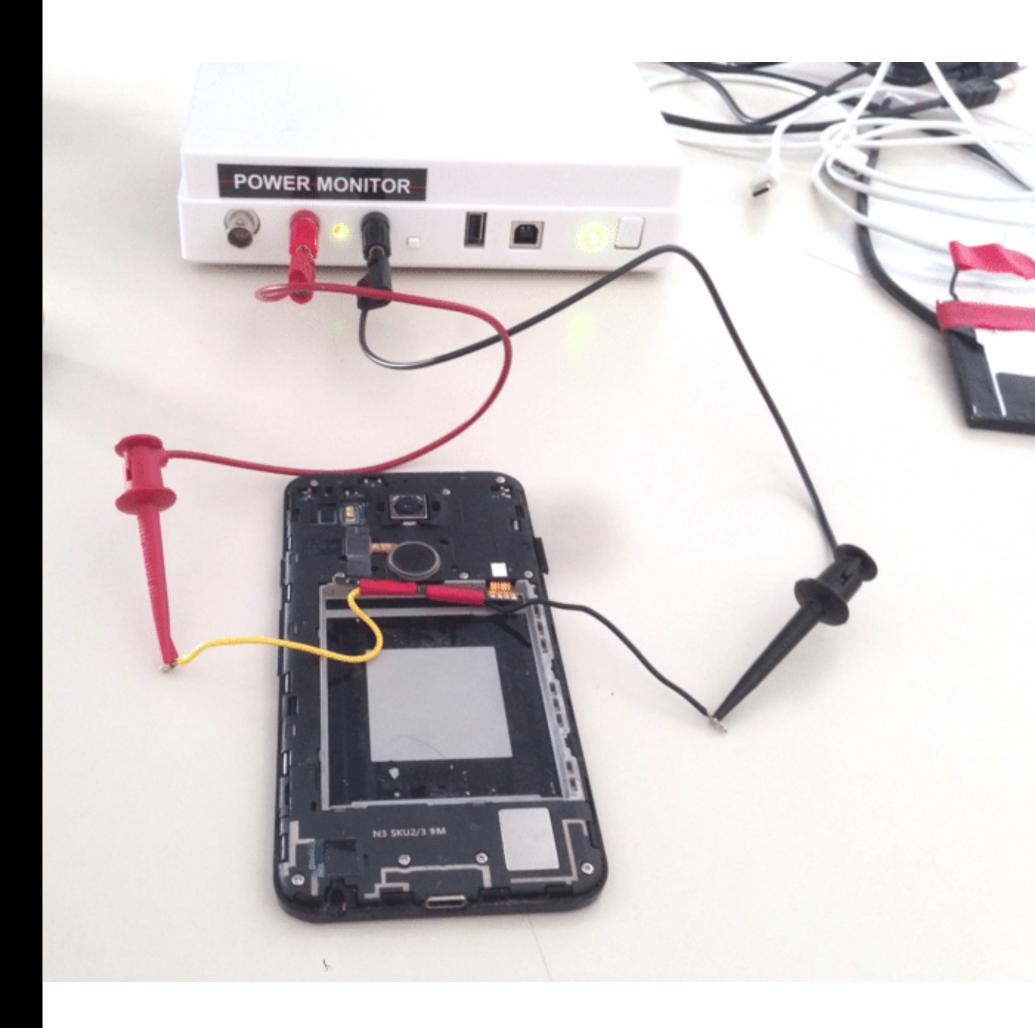
Development

Execution

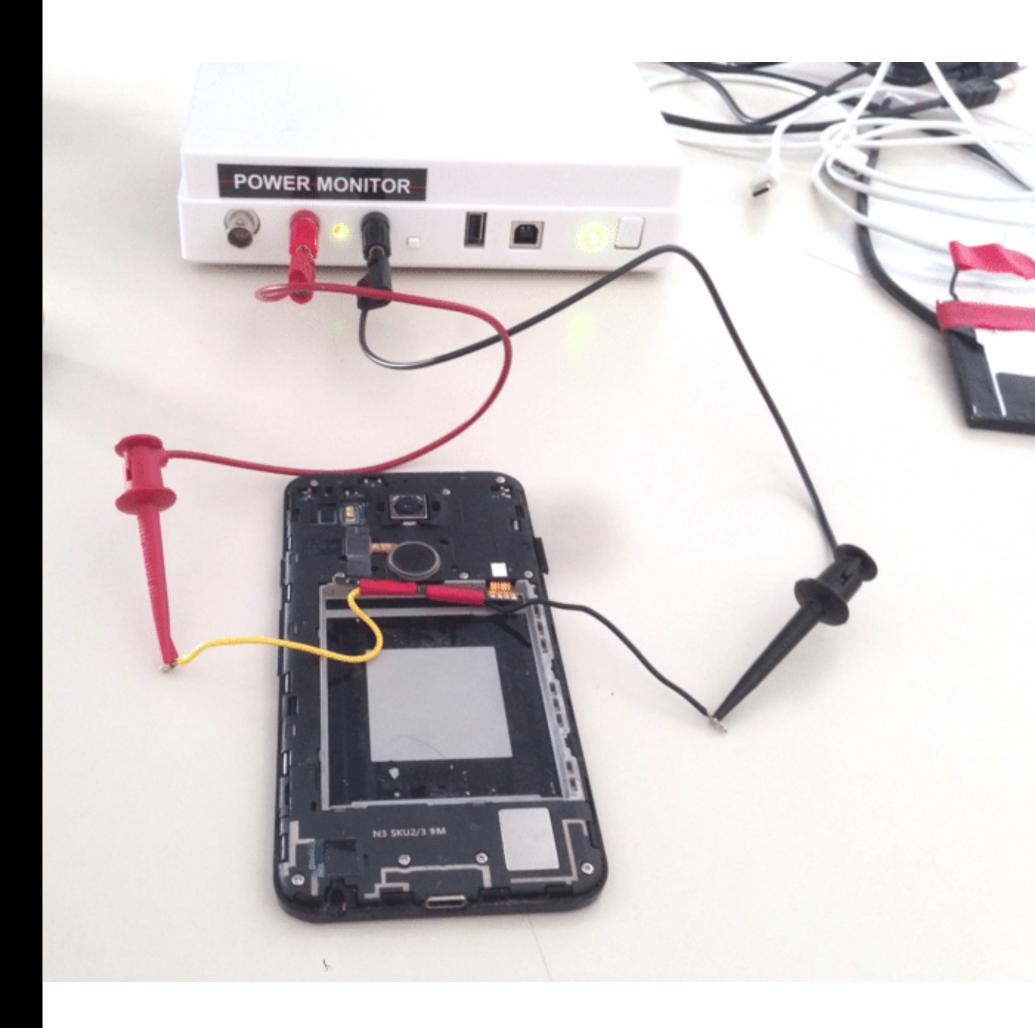
Development

Infrastructure

1. Create a scenario.

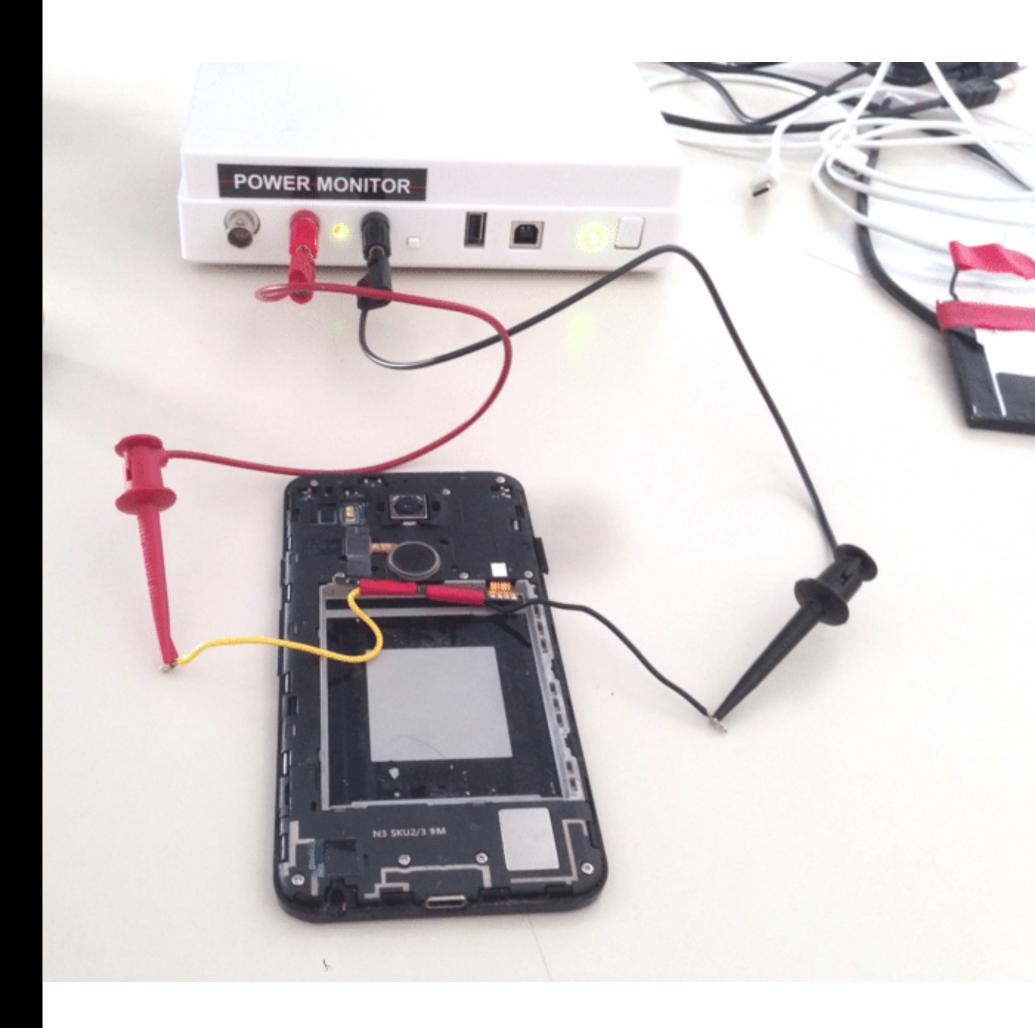

1. Create a scenario.

Execute and collect power data. 2.

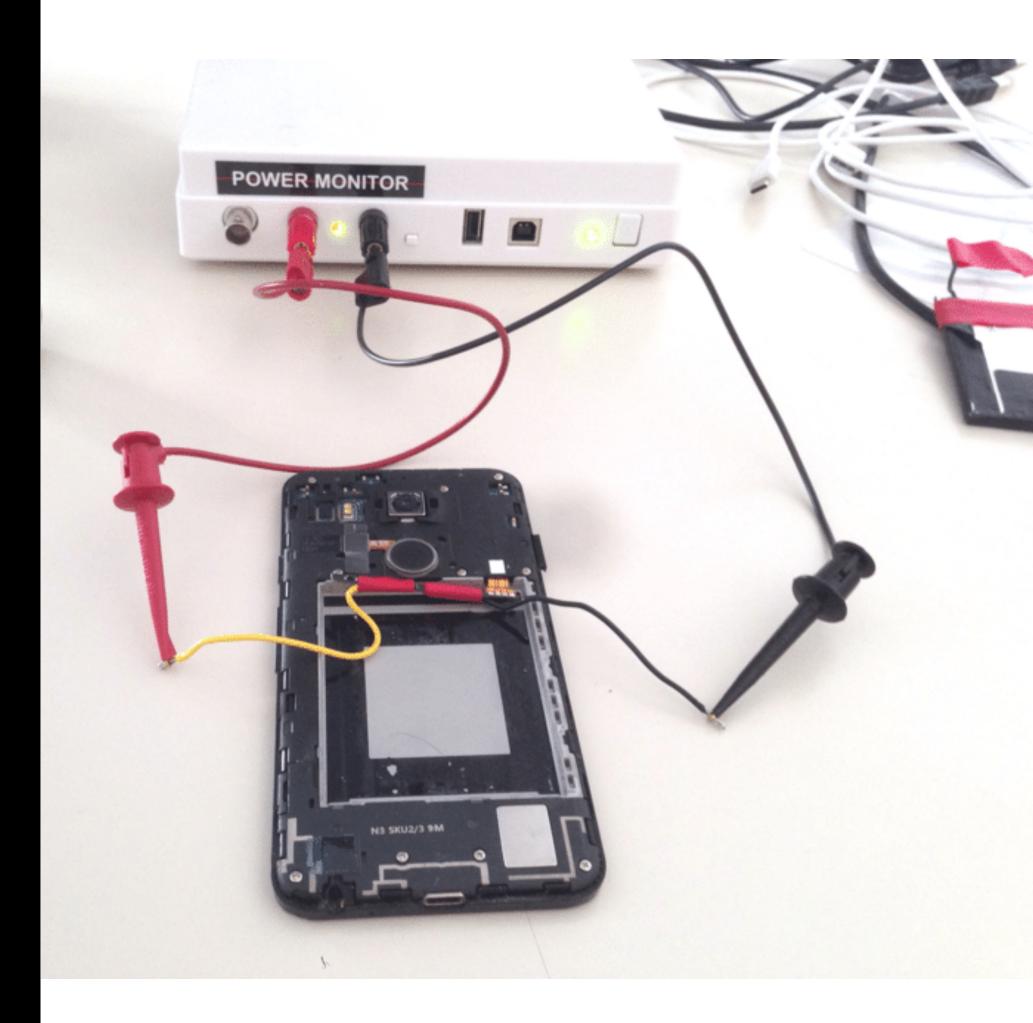

- 1. Create a scenario.
- 2. Execute and collect power data.
- Implement energy improvement. 3.

- 1. Create a scenario.
- 2. Execute and collect power data.
- 3. Implement energy improvement.
- Execute and collect power data. 4.

- 1. Create a scenario.
- 2. Execute and collect power data.
- 3. Implement energy improvement.
- 4. Execute and collect power data.
- Analyse and compare results. 5.

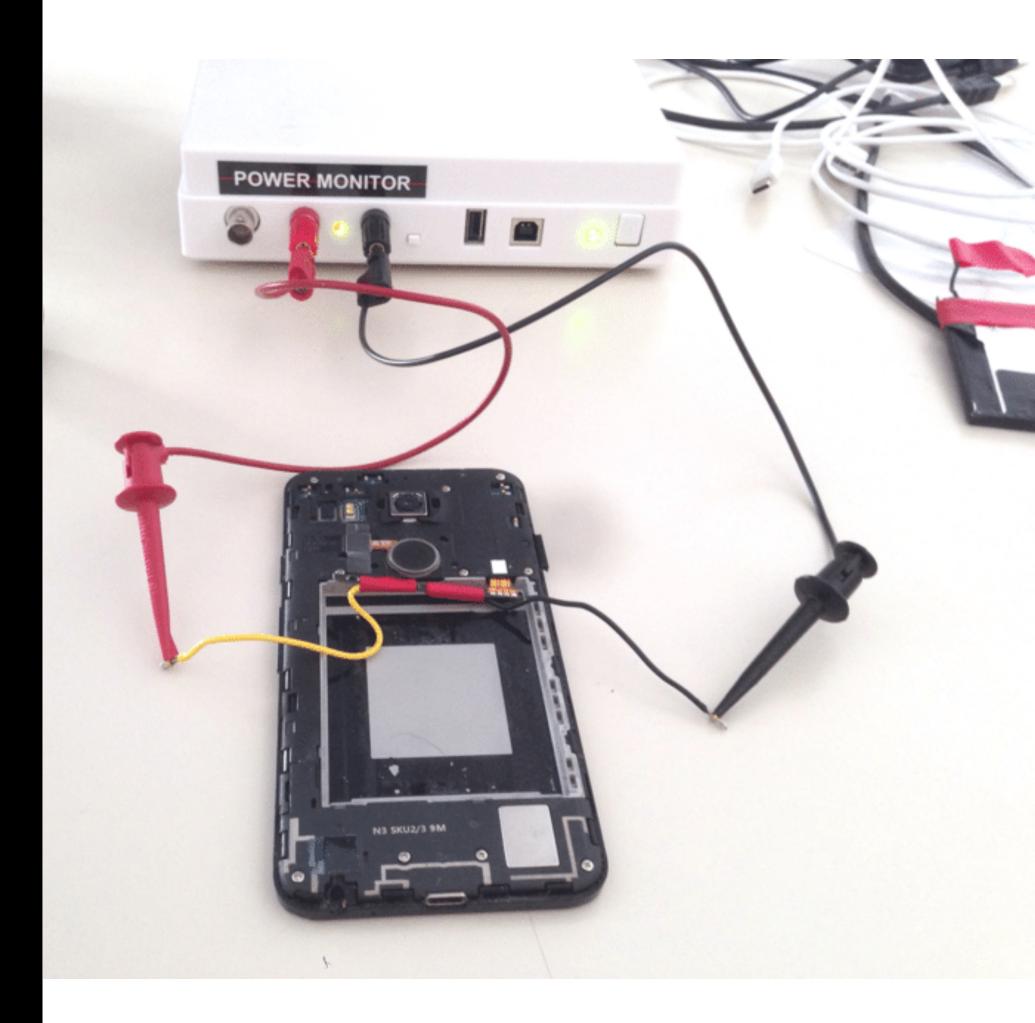


Electricity bill 🤤



Electricity bill

Execution time O



- Electricity bill
- Execution time
- Estimation tools (a.k.a. energy profilers)

- Electricity bill
- Execution time
- Estimation tools (a.k.a. energy profilers)
- Power Monitors (e.g., Monsoon)

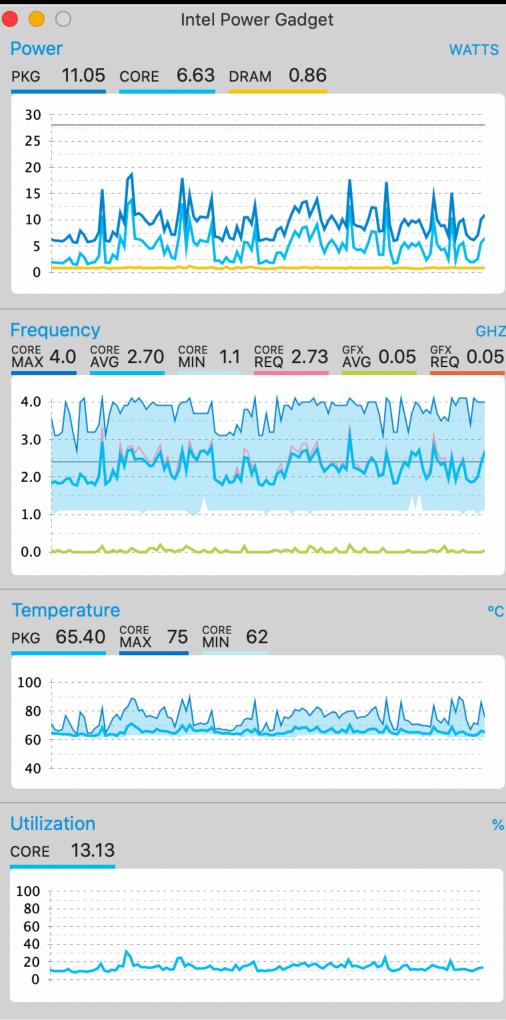

 Windows Energy Estimation Engine (E3) 7-day dump > powercfg.exe /srumutil https://edu.nl/mdkvc

- Windows Energy Estimation Engine (E3)
 7-day dump > powercfg.exe /srumutil
 https://edu.nl/mdkvc
- Intel RAPL (Linux and Mac).

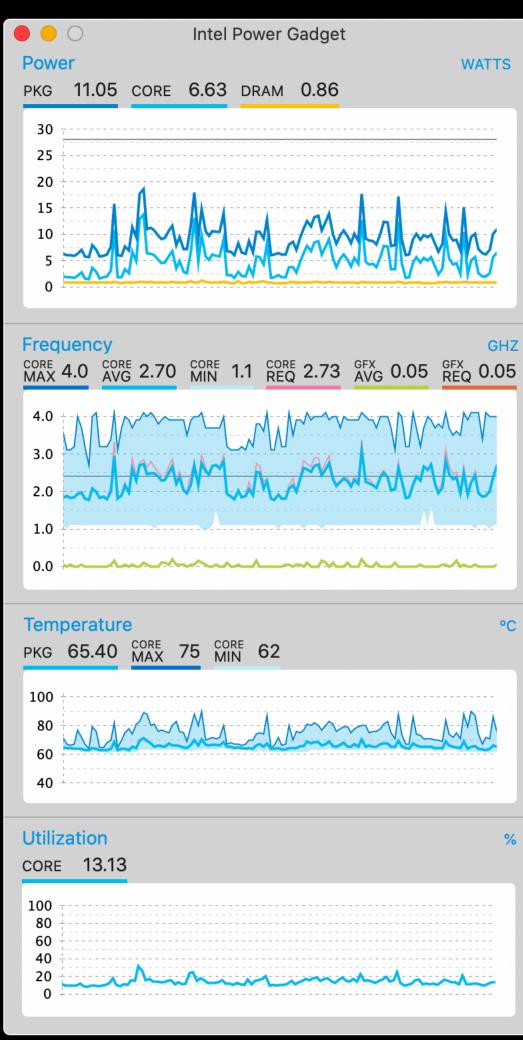
- Windows Energy Estimation Engine (E3)
 7-day dump > powercfg.exe /srumutil
 https://edu.nl/mdkvc
- Intel RAPL (Linux and Mac).
- Powerstat (Linux)
 <u>https://edu.nl/edcb9</u>

- Windows Energy Estimation Engine (E3)
 7-day dump > powercfg.exe /srumutil
 https://edu.nl/mdkvc
- Intel RAPL (Linux and Mac).
- Powerstat (Linux)

 https://edu.nl/edcb9
- Powermetrics (Mac)


- Windows Energy Estimation Engine (E3) 7-day dump > powercfg.exe /srumutil https://edu.nl/mdkvc
- Intel RAPL (Linux and Mac).
- Powerstat (Linux) https://edu.nl/edcb9
- Powermetrics (Mac)
- Intel PowerGadget (Windows and Mac) https://edu.nl/xmdvd

- Windows Energy Estimation Engine (E3) 7-day dump > powercfg.exe /srumutil https://edu.nl/mdkvc
- Intel RAPL (Linux and Mac).
- Powerstat (Linux) https://edu.nl/edcb9
- Powermetrics (Mac)
- Intel PowerGadget (Windows and Mac) https://edu.nl/xmdvd
- Intel PowerLog. CLI tool shipped with PowerGadget. Measure any given bash command.


>/Applications/Intel\ Power\ Gadget/PowerLog -cmd <CMD>

Profiler Live Demo

Profiler Live Demo

Other estimation tools

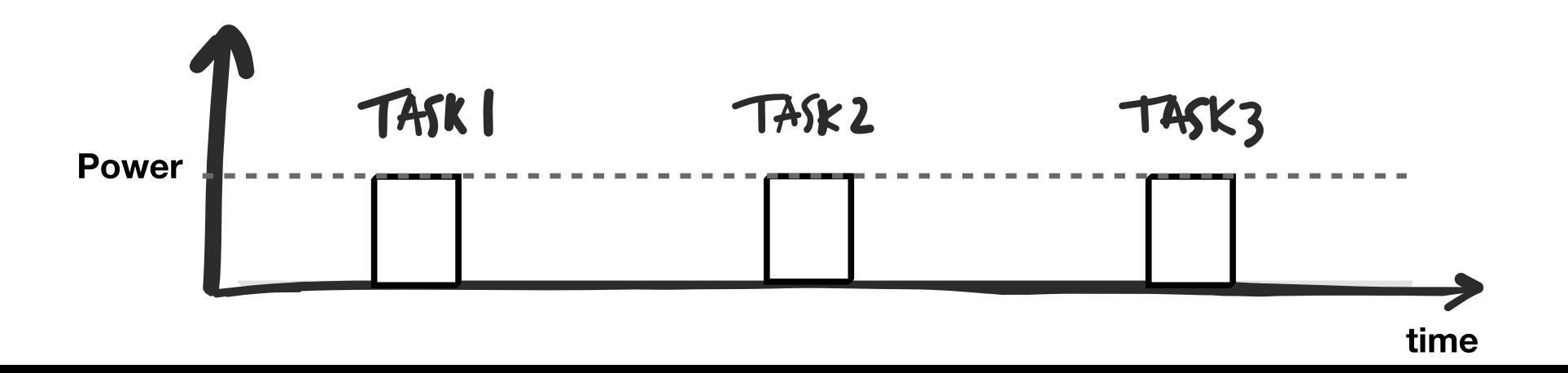
Other estimation tools

Website Carbon Calculator. **#LetsGreenTheWeb** https://www.websitecarbon.com

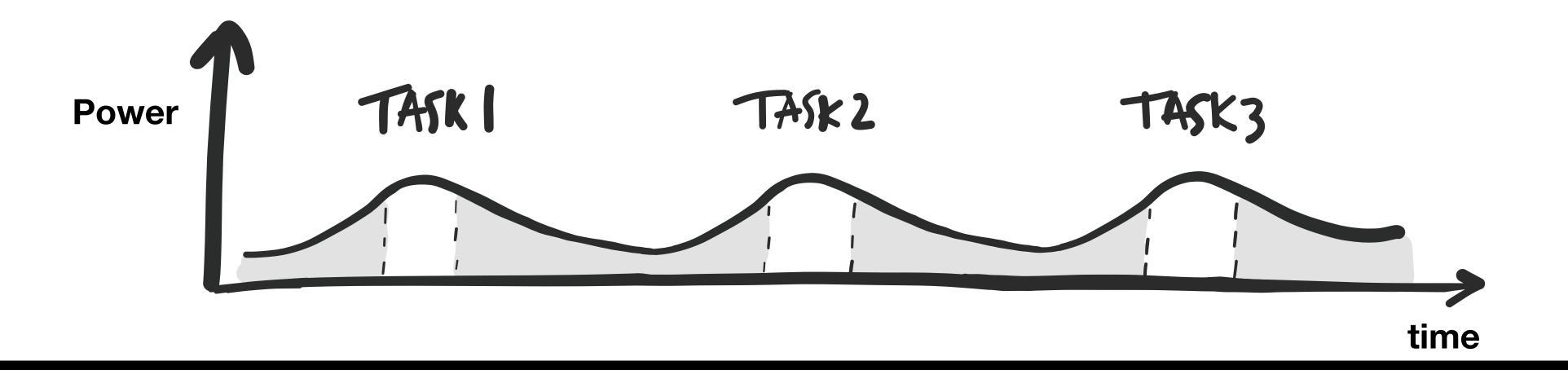
			🗎 websitecarbon.com	Ċ		0
Webs	ite Carbon Ca	alculator		Get the badge!	How does it work?	FAQ
			your we			
	Estimate	your web	page carbon footpr	int:		
	Your web	page addres	SS			
	Web page UF	RL		Ca	lculate	
Display a men						

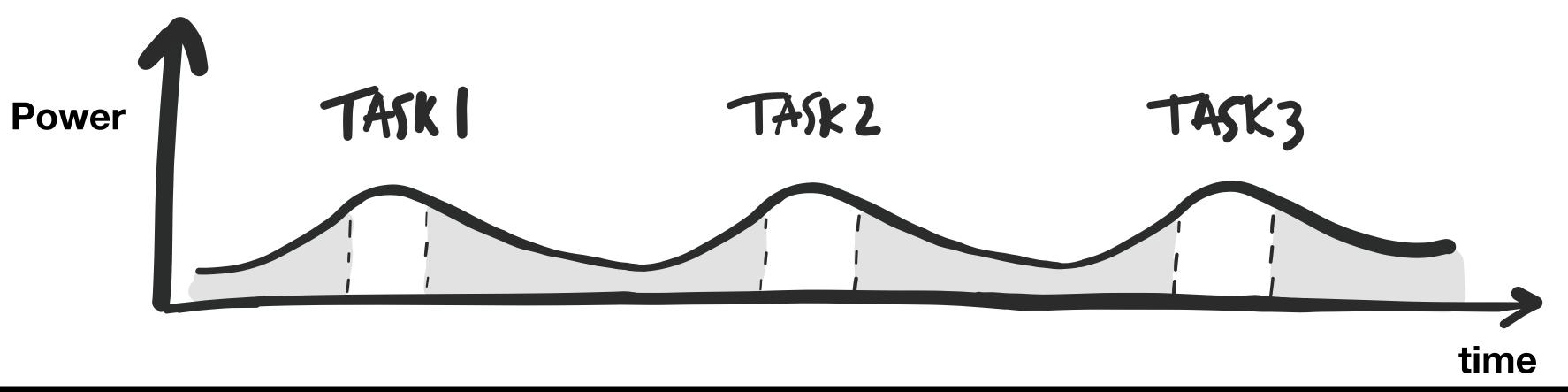
Other estimation tools

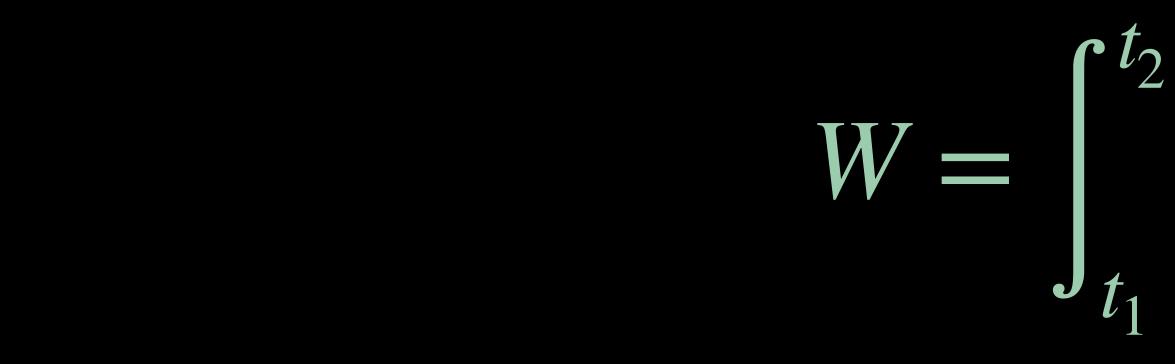
Website Carbon Calculator. **#LetsGreenTheWeb** https://www.websitecarbon.com


ML CO2 Impact. Extra: it generates badges in LaTeX for ML projects. https://mlco2.github.io/impact/

•••	< > 🗈		🗎 websitecarbon.com	C	
Web	site Carbon Ca	alculator		Get the badge! Hov	v does it work? FAQ
	IOW	IS Y	our w	edsit	e
ir	mna	otin	a tho	nlan	at2
	IIpa		ig the	plane	El :
	Fetimata	your web n	age carbon footpr	rint:	
	Your web p	page address			
	Web page UR	RL		Calcula	ate
Display a mer					
••• (nlco2.github.io	Ċ	
•••	ML CO2		a mlco2.github.io	٥	● ① ⑦
	ML CO2	Impact		[Menu ≡
	ML CO2	Impact	Learning I	Emissior	Menu ≡
•••(ML CO2	Impact	Learning I Calculator	Emissior	Menu =
••• (ML CO2	Impact achine	Learning E Calculator ntime and cloud provider to of your research.	Emissior estimate the carbon i	Menu =
	ML CO2 ML CO2 Choose y This cal the appr	Impact achine your hardware, ru culator will give yo roximate offset ca	Learning E Calculator	estimate the carbon i on emissions produced	Menu = IS mpact d and e grid
	ML CO2 ML CO2 Choose y This cal the appr	Impact Achine your hardware, ru culator will give yu roximate offset ca y the cloud provide	Learning E Calculator ntime and cloud provider to of your research. ou 2 numbers: the raw carbo arbon emissions. The latter r	estimate the carbon i on emissions produced number depends on th se our estimates if any	Menu = IS mpact d and e grid
	ML CO2 ML CO2 Choose y This cal the appr used by	Impact Achine your hardware, ru culator will give yu roximate offset ca y the cloud provide	Learning E Calculator ntime and cloud provider to of your research. ou 2 numbers: the raw carbo arbon emissions. The latter r er and we are open to updat	estimate the carbon i on emissions produced number depends on th se our estimates if any	Menu = IS mpact d and e grid
	ML CO2 ML CO2 Choose y This cal the appr used by	Impact Echine your hardware, ru culator will give yu roximate offset ca y the cloud provide	Learning E Calculator ntime and cloud provider to of your research. ou 2 numbers: the raw carbo arbon emissions. The latter r er and we are open to updat looks inaccurate or outdated	estimate the carbon i on emissions produced number depends on th ce our estimates if any d.	Menu =
	ML CO2 ML CO2 Choose y This cal the appr used by Ha	Impact Echine your hardware, ru culator will give yu roximate offset ca y the cloud provide	Learning E Calculator ntime and cloud provider to of your research. ou 2 numbers: the raw carbo arbon emissions. The latter r er and we are open to updat looks inaccurate or outdated Hours Used 12	estimate the carbon in on emissions produced number depends on th te our estimates if any d. Provider	Menu =
	ML CO2 ML CO2 Choose y This cal the appr used by Ha	Impact Echine your hardware, ru culator will give yu roximate offset ca y the cloud provide	Learning E Calculator ntime and cloud provider to of your research. ou 2 numbers: the raw carbo arbon emissions. The latter r er and we are open to updat looks inaccurate or outdated Hours Used	estimate the carbon in on emissions produced number depends on th te our estimates if any d. Provider	Menu =
Display a met	ML CO2 ML CO2 Choose y This cal the appr used by Ha Tesla V1	Impact Echine your hardware, ru culator will give yu roximate offset ca y the cloud provide	Learning E Calculator ntime and cloud provider to of your research. ou 2 numbers: the raw carbo arbon emissions. The latter r er and we are open to updat looks inaccurate or outdated Hours Used 12	estimate the carbon in on emissions produced number depends on th te our estimates if any d. Provider	Menu =

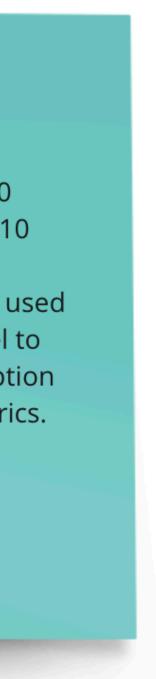

Going from Power samples to Energy Consumption





Going from Power samples to Energy Consumption

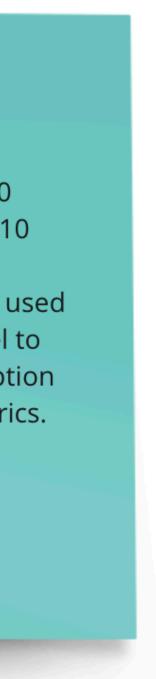
Going from Power samples to Energy Consumption



$$P(t) \cdot dt$$

I have used Intel Power Log: /Applications/Intel\ Power\ Gadget/PowerLog -duration 10 My processor consumed 68J in 10 seconds.

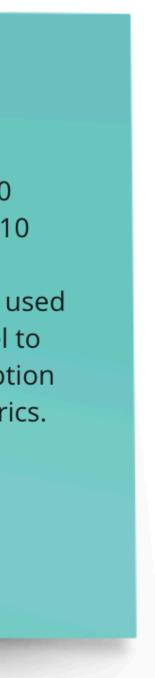
In an ML project this tool could be used when training a predictive model to understand how energy consumption compares with the accuracy metrics. Luís Cruz



• Use an energy profiler of your choice to collect power measurements from your computer.

I have used Intel Power Log: /Applications/Intel\ Power\ Gadget/PowerLog -duration 10 My processor consumed 68J in 10 seconds.

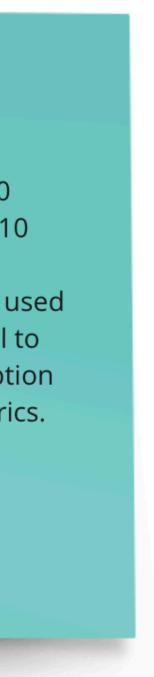
In an ML project this tool could be used when training a predictive model to understand how energy consumption compares with the accuracy metrics. Luís Cruz


- Use an energy profiler of your choice to collect power measurements from your computer.
 - Recommended energy profilers: Energy Profilers: Intel Power Gadget ightarrow(Mac/Windows) or **Powerstat** (Linux).

I have used Intel Power Log: /Applications/Intel\ Power\ Gadget/PowerLog -duration 10 My processor consumed 68J in 10 seconds.

In an ML project this tool could be used when training a predictive model to understand how energy consumption compares with the accuracy metrics. Luís Cruz

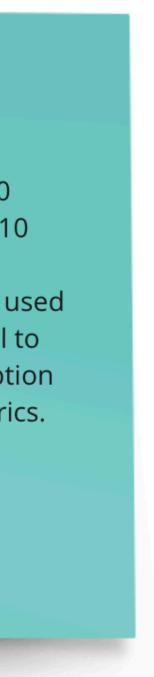
de 1



- Use an energy profiler of your choice to collect power measurements from your computer.
 - Recommended energy profilers: Energy Profilers: Intel Power Gadget ightarrow(Mac/Windows) or **Powerstat** (Linux).
- Use a sticky note to explain the following: (400 chars max)

I have used Intel Power Log: /Applications/Intel\ Power\ Gadget/PowerLog -duration 10 My processor consumed 68J in 10 seconds.

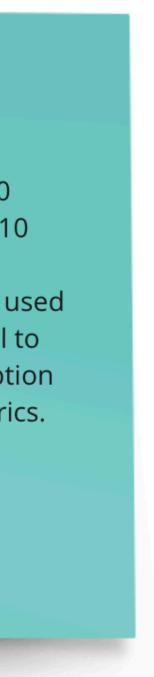
In an ML project this tool could be used when training a predictive model to understand how energy consumption compares with the accuracy metrics. Luís Cruz



- Use an energy profiler of your choice to collect power measurements from your computer.
 - Recommended energy profilers: Energy Profilers: Intel Power Gadget (Mac/Windows) or **Powerstat** (Linux).
- Use a sticky note to explain the following: (400 chars max)
 - How you used the tool and what was the final energy consumption.

I have used Intel Power Log: /Applications/Intel\ Power\ Gadget/PowerLog -duration 10 My processor consumed 68J in 10 seconds.

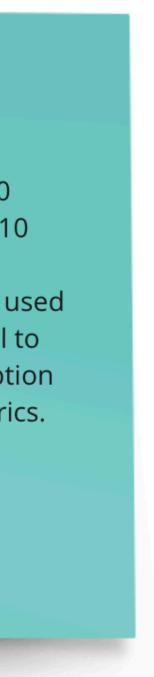
In an ML project this tool could be used when training a predictive model to understand how energy consumption compares with the accuracy metrics. Luís Cruz



- Use an energy profiler of your choice to collect power measurements from your computer.
 - Recommended energy profilers: Energy Profilers: Intel Power Gadget (Mac/Windows) or **Powerstat** (Linux).
- Use a sticky note to explain the following: (400 chars max)
 - How you used the tool and what was the final energy consumption.
 - How the profiler could be used to test energy efficiency in a software lacksquareproject.

I have used Intel Power Log: /Applications/Intel\ Power\ Gadget/PowerLog -duration 10 My processor consumed 68J in 10 seconds.

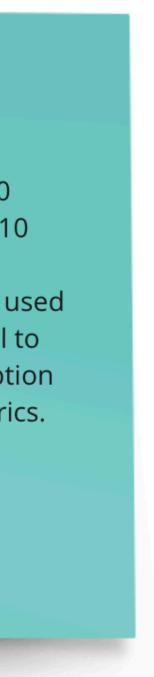
In an ML project this tool could be used when training a predictive model to understand how energy consumption compares with the accuracy metrics. Luís Cruz



- Use an energy profiler of your choice to collect power measurements from your computer.
 - Recommended energy profilers: Energy Profilers: Intel Power Gadget (Mac/Windows) or **Powerstat** (Linux).
- Use a sticky note to explain the following: (400 chars max)
 - How you used the tool and what was the final energy consumption.
 - How the profiler could be used to test energy efficiency in a software lacksquareproject.
- Read some of your colleague's answers and upvote your favourite with the emoji 👍.

I have used Intel Power Log: /Applications/Intel\ Power\ Gadget/PowerLog -duration 10 My processor consumed 68J in 10 seconds.

In an ML project this tool could be used when training a predictive model to understand how energy consumption compares with the accuracy metrics. Luís Cruz



- Use an energy profiler of your choice to collect power measurements from your computer.
 - Recommended energy profilers: Energy Profilers: Intel Power Gadget (Mac/Windows) or **Powerstat** (Linux).
- Use a sticky note to explain the following: (400 chars max)
 - How you used the tool and what was the final energy consumption.
 - How the profiler could be used to test energy efficiency in a software lacksquareproject.
- Read some of your colleague's answers and upvote your favourite with the emoji 👍.
- Miro board: https://edu.nl/8b639

I have used Intel Power Log: /Applications/Intel\ Power\ Gadget/PowerLog -duration 10 My processor consumed 68J in 10 seconds.

In an ML project this tool could be used when training a predictive model to understand how energy consumption compares with the accuracy metrics. Luís Cruz

- Measuring energy consumption is difficult!
- Solutions?

- Measuring energy consumption is difficult!
- Solutions?
- Software Design Pattern a given context in software design.

General, reusable solution to a recurrent problem within

- Measuring energy consumption is difficult!
- Solutions?
- Software Design Pattern a given context in software design.
- Energy Pattern Design pattern to improve energy efficiency.

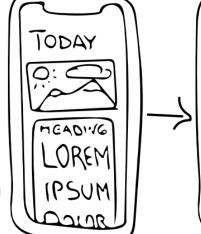
General, reusable solution to a recurrent problem within

Energy Patterns for Mobile

Energy Patterns for Mobile Apps

A visualization with prevalence and co-occurence of patterns can be found here. News This catalog has been **accepted** to the *Journal of Empirical Software Engineering*. Check out the **preprint**.

tqrg.github.io


\leftarrow show all patterns

Dark UI Colors

Provide a dark UI color theme to save battery on devices with AMOLED screens.

Context

Screen is one of the major source of power consumption on mobile devices. Apps that require heavy usage of screen (e.g., reading apps) can have a big impact on battery life.

Di C

Solution

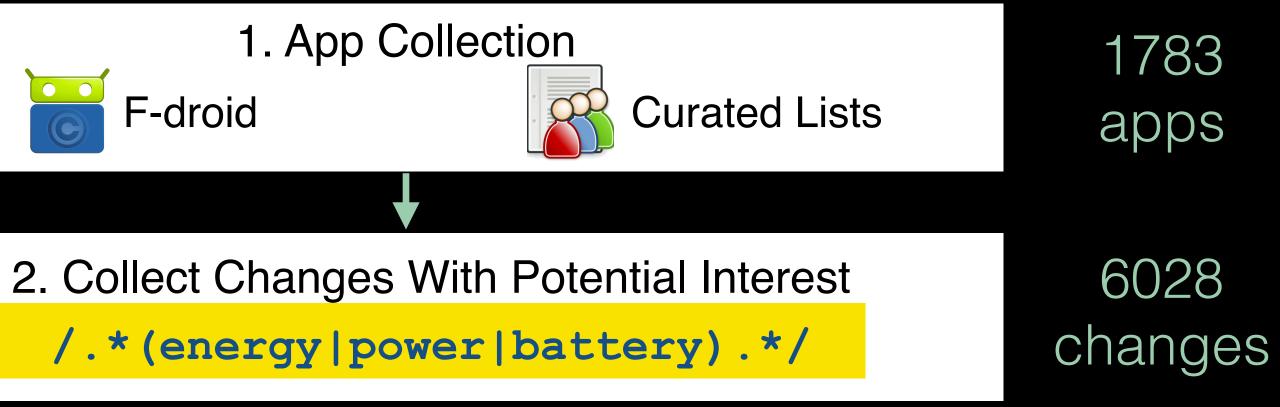
Provide a UI with dark background colors. This is particularly beneficial for mobile devices with AMOLED screens, which are more energy efficient when displaying dark colors. In some cases, it might be reasonable to allow users to choose between a light and a dark theme. The dark theme can also be activated using a special trigger (e.g., when battery is running low).

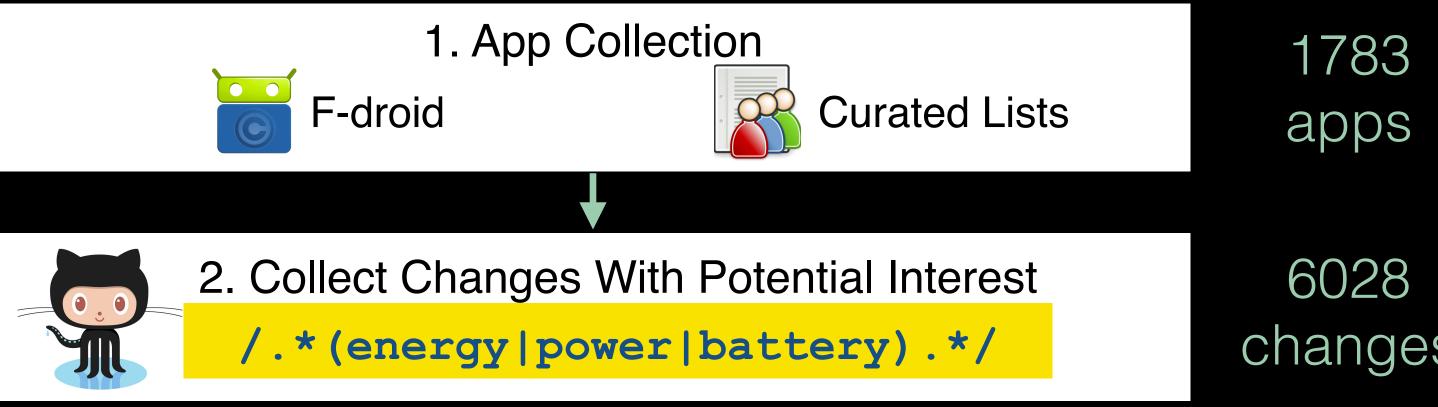
Display a menu

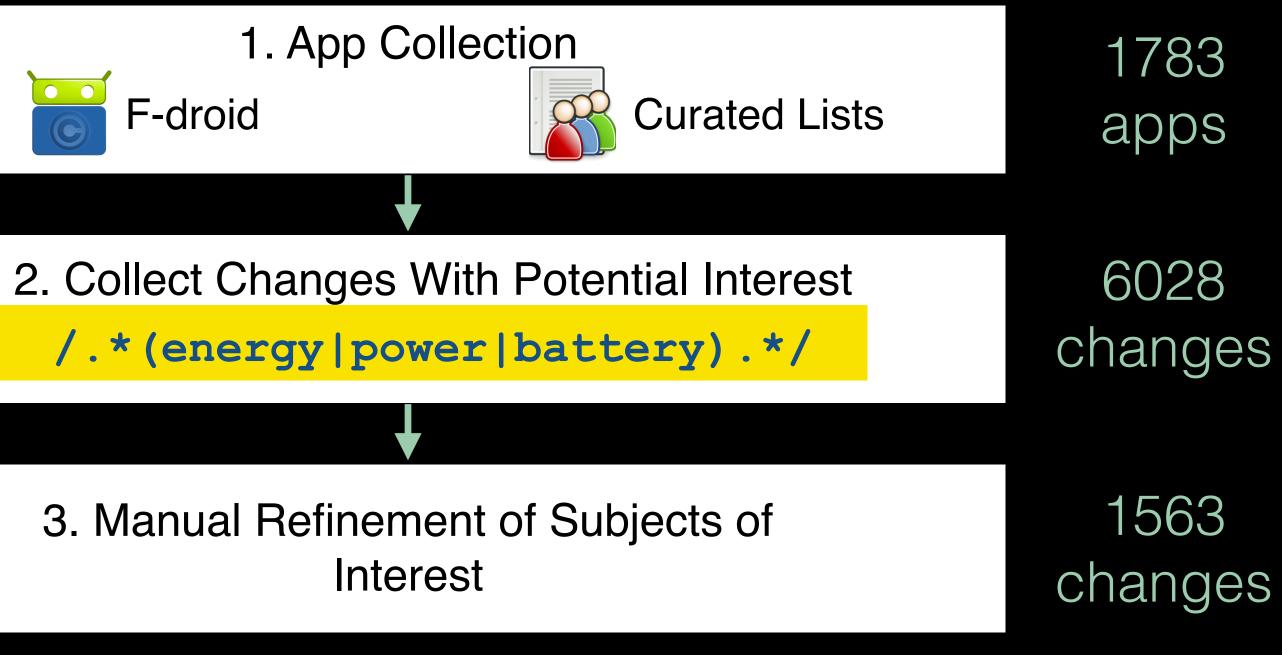
https://tqrg.github.io/energy-patterns/

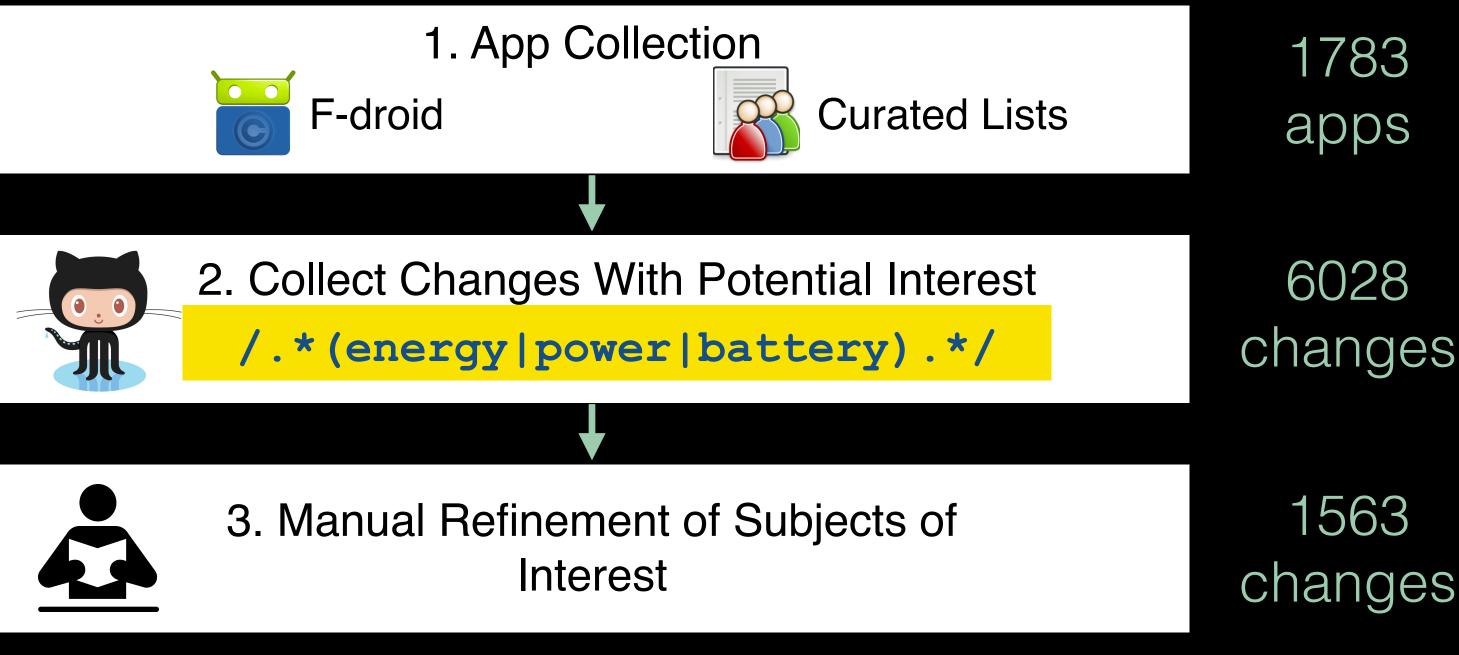


Methodolgy

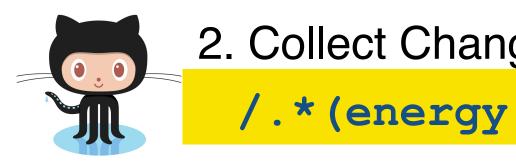

Methodolgy

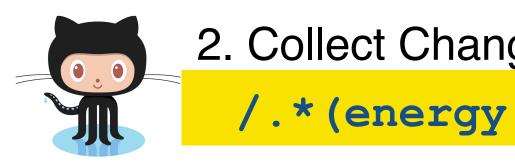



1. App Collection



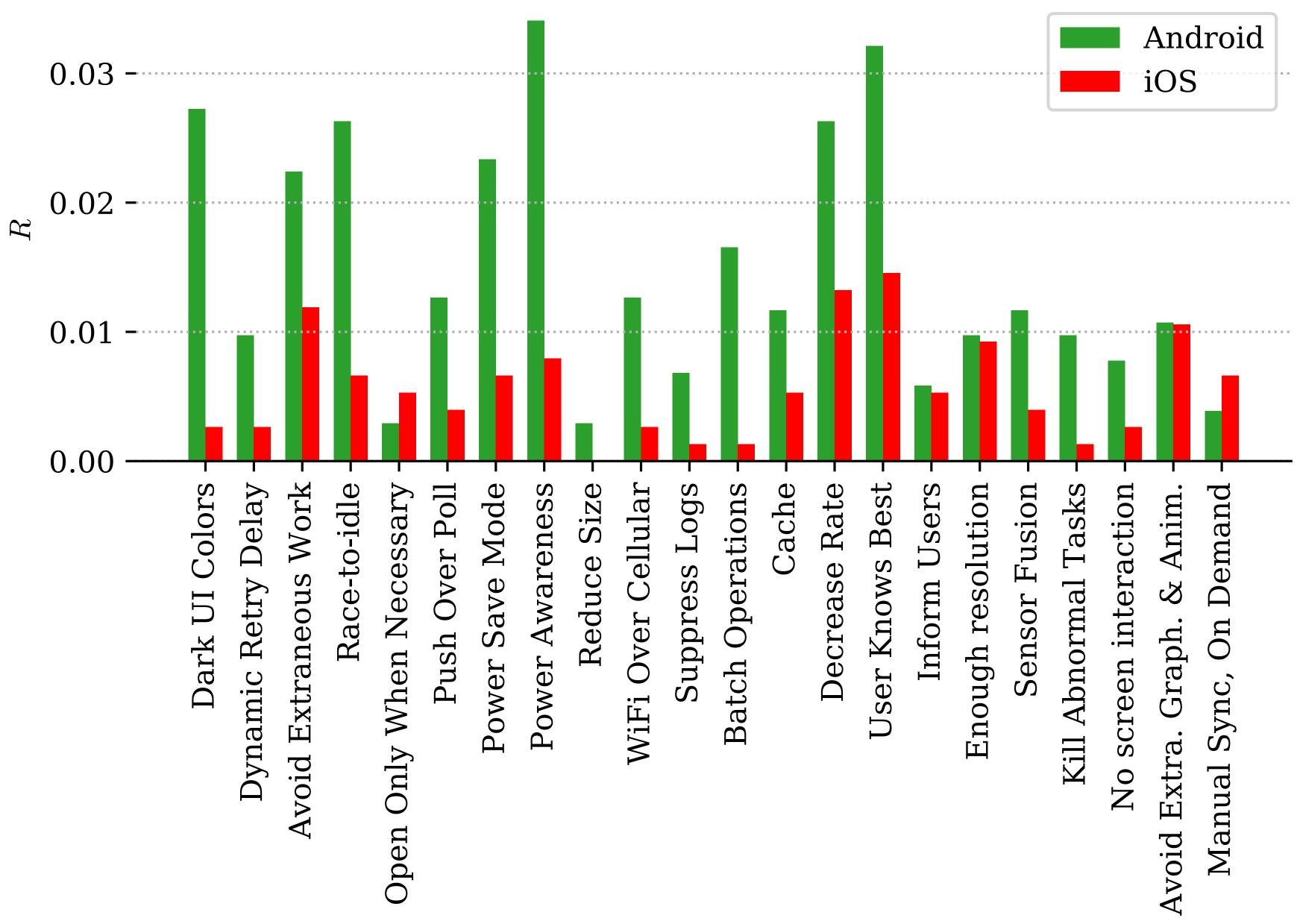
1783 apps

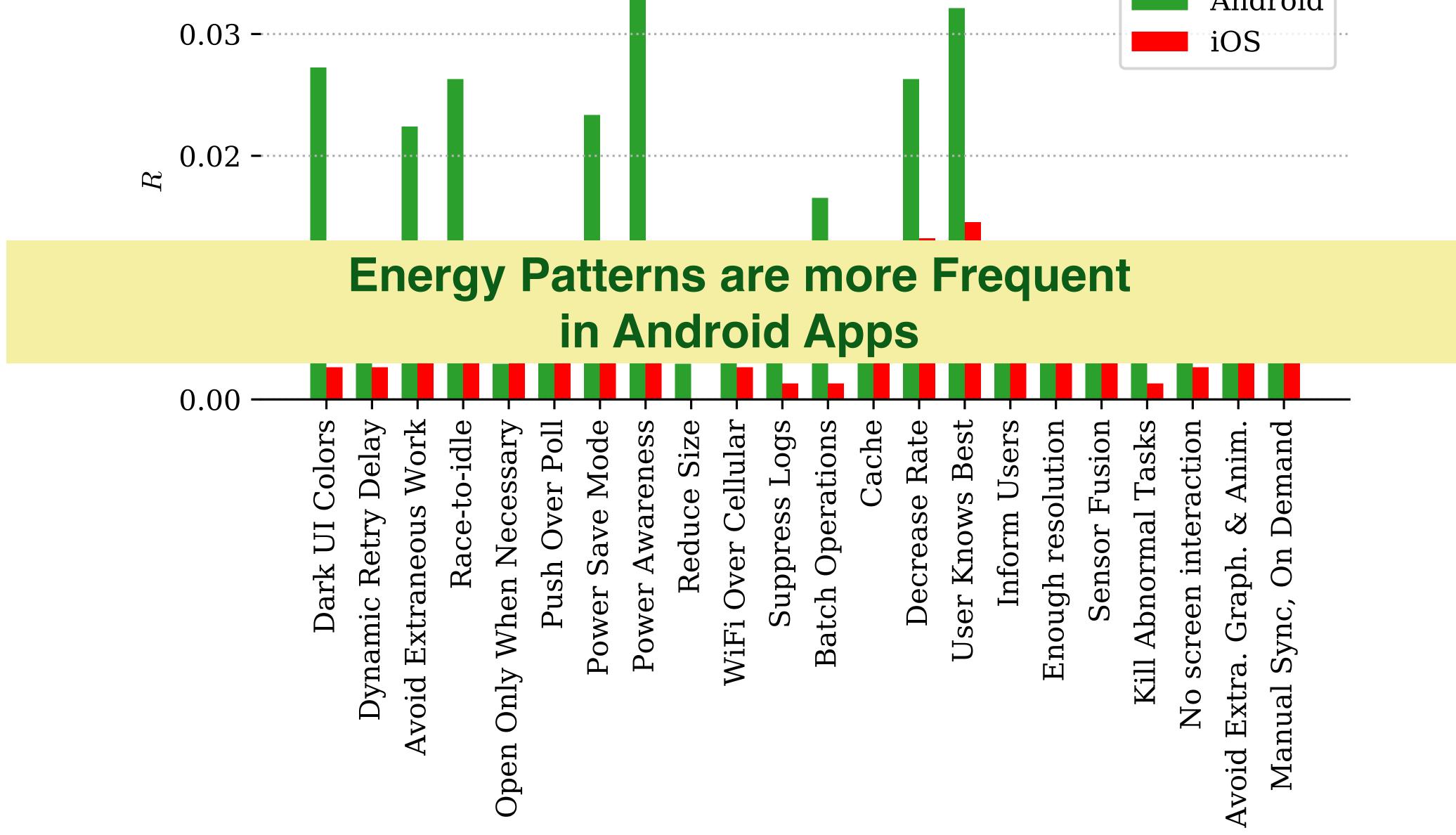



3. Manual Ref

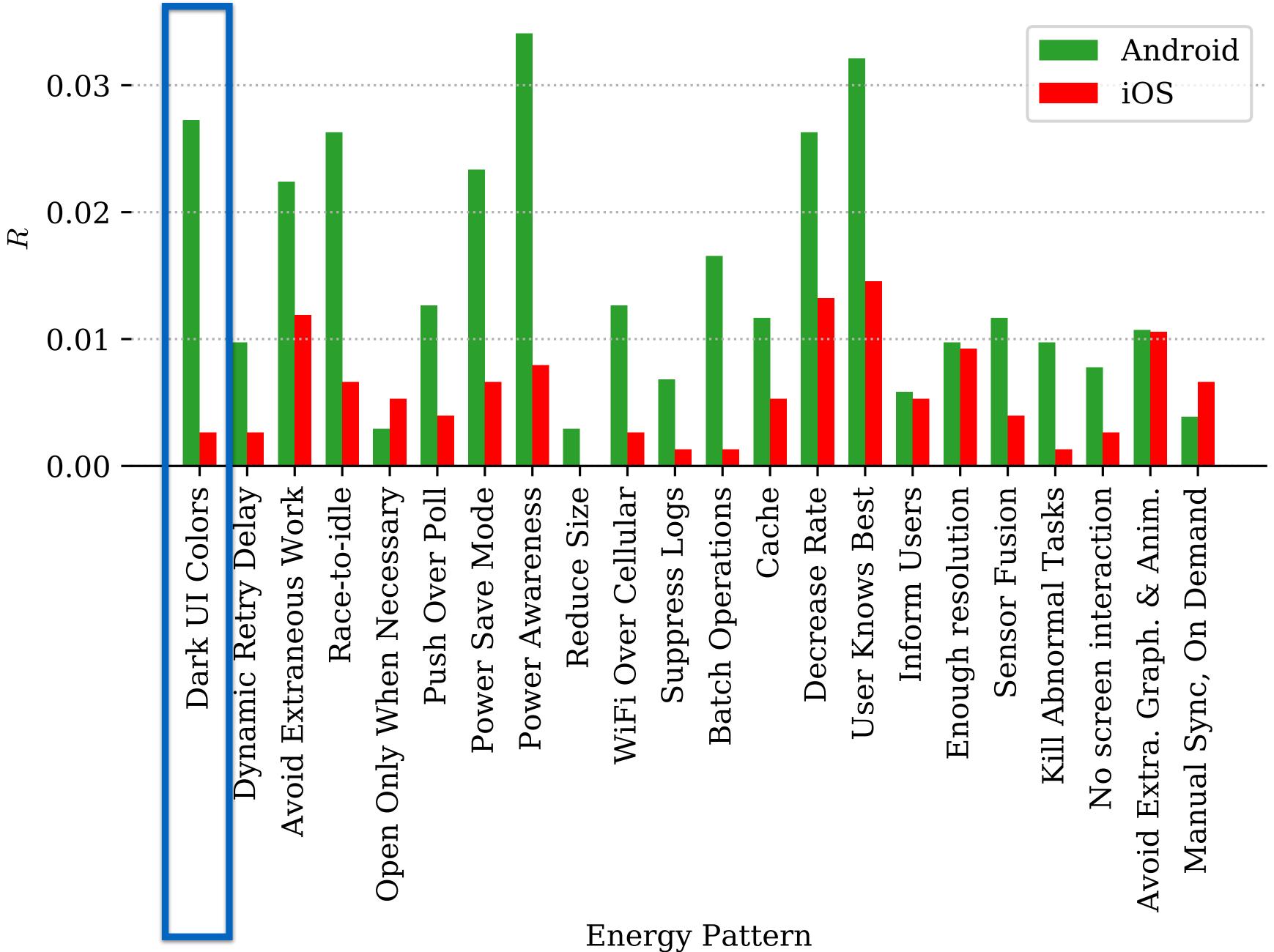
4. The

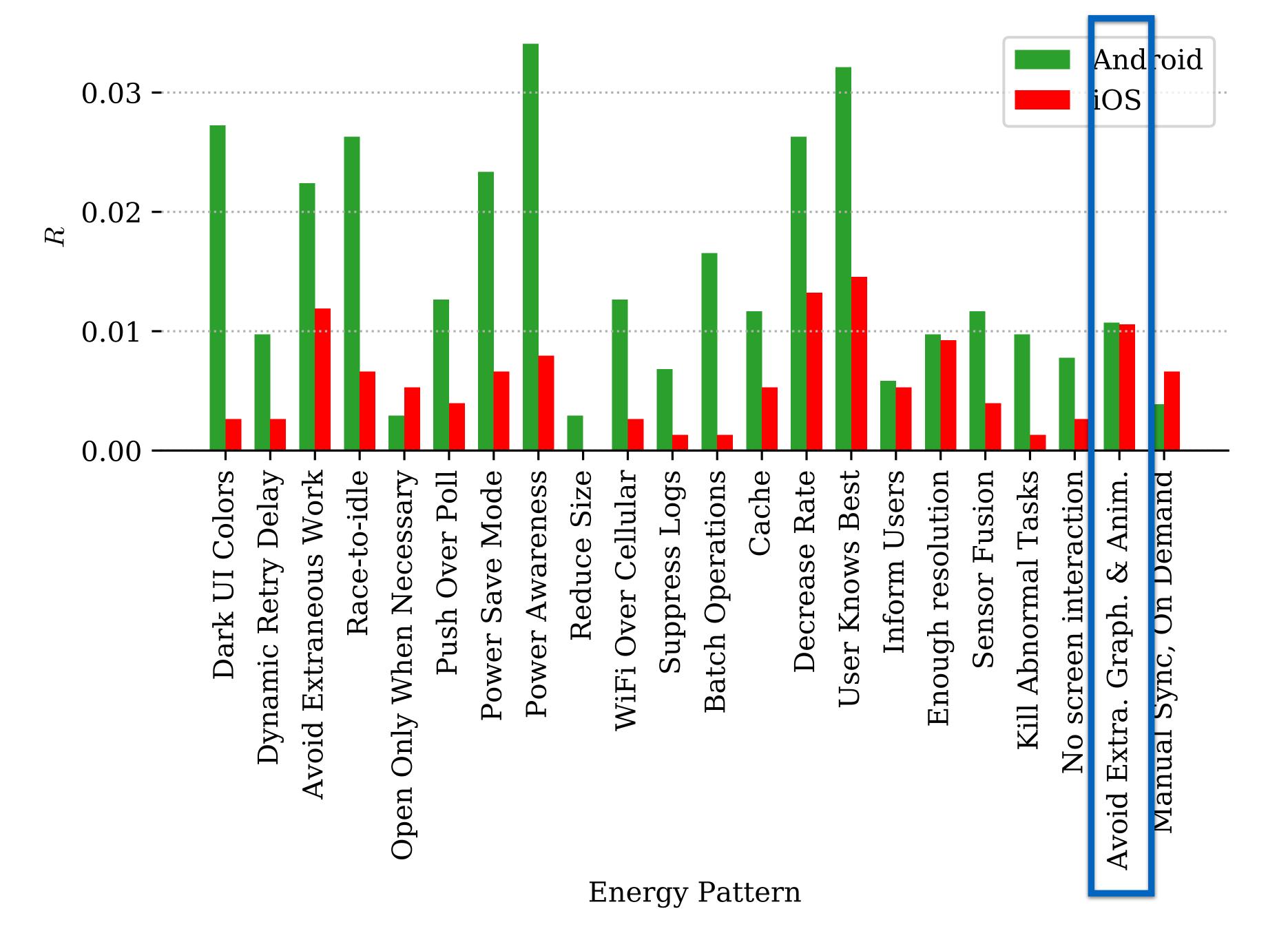
pp Collection	1783 apps
nges With Potential Interest	6028
<pre>/power battery).*/</pre>	changes
finement of Subjects of Interest	1563 changes
ematic Analysis	431 reusable changes

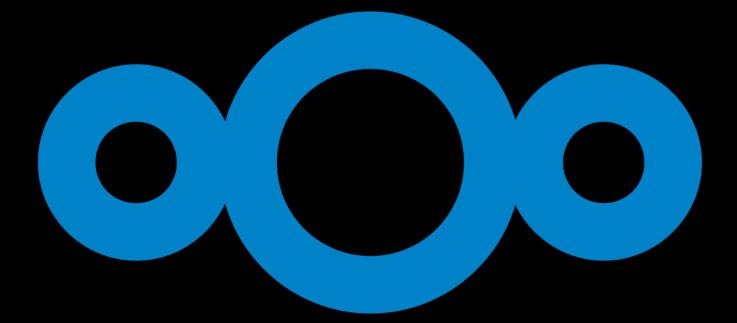

3. Manual Ref


4. The

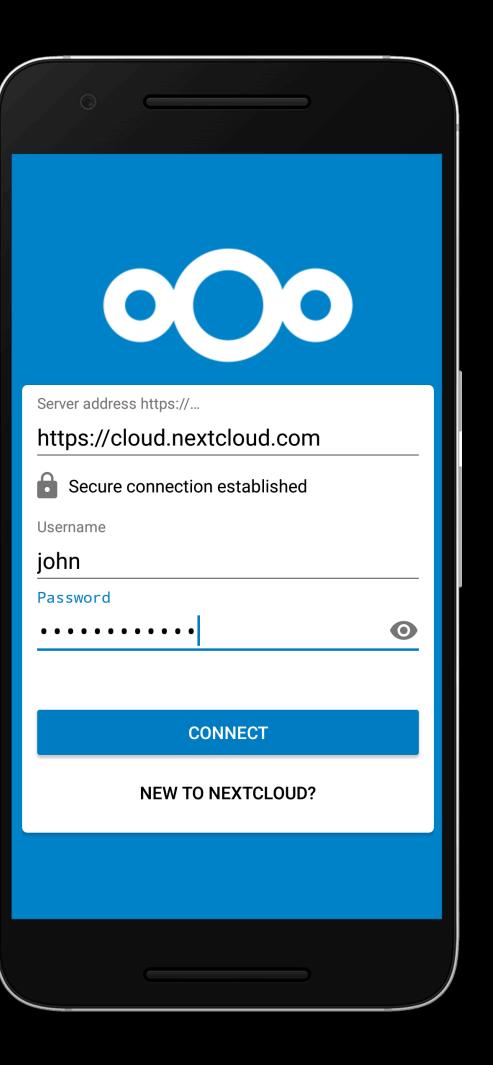
App Collection	1783 apps
nges With Potential Interest /power/battery).*/	6028 changes
finement of Subjects of Interest	1563 changes
ematic Analysis	431 reusable changes
of Energy Patterns	22 patterns




Energy Pattern



Energy Pattern



Nextcloud

<u>1</u>			
10° 😻 🛙	Nextcloud	26% ■ 7	15:43 :
	Documents 2.5 MB, 51 minutes ago	\$	
	Photos 3.0 MB, 51 minutes ago	\leq	
Л	hirschmilch_drog_hous.pls 128 B, 5 Mar	\leq	
	Nextcloud.mp4 452 KB, 51 minutes ago	Ś	
nextcloud	Nextcloud.png 36 KB, 51 minutes ago	<	
L	Nextcloud Manual.pdf 4.4 MB, 51 minutes ago	<	• • •
	4 files, 2 folders	+	
		$\overline{}$	

• Users complain that sometimes they go on a trip and app when battery life is essential.

Nextcloud drains their battery. Users consider uninstalling the

- Users complain that sometimes they go on a trip and app when battery life is essential.
- data connections.

Nextcloud drains their battery. Users consider uninstalling the

• File sync can be energy-greedy. Send large files to the server, long 3G/4G

- Users complain that sometimes they go on a trip and app when battery life is essential.
- data connections.
- It is mostly used for backup. No real-time collaboration is needed.

Nextcloud drains their battery. Users consider uninstalling the

• File sync can be energy-greedy. Send large files to the server, long 3G/4G

- Users complain that sometimes they go on a trip and app when battery life is essential.
- data connections.
- It is mostly used for backup. No real-time collaboration is needed.
- days you really need all the battery you can get.

Nextcloud drains their battery. Users consider uninstalling the

• File sync can be energy-greedy. Send large files to the server, long 3G/4G

Energy requirements vary depending on context and user. some

- Users complain that sometimes they go on a trip and app when battery life is essential.
- data connections.
- It is mostly used for backup. No real-time collaboration is needed.
- days you really need all the battery you can get.

Nextcloud drains their battery. Users consider uninstalling the

• File sync can be energy-greedy. Send large files to the server, long 3G/4G

Energy requirements vary depending on context and user. some

- Users complain that sometimes they go on a trip and app when battery life is essential.
- data connections.
- It is mostly used for backup. No real-time collaboration is needed.
- days you really need all the battery you can get.
- https://github.com/nextcloud/android/commit/ 8bc432027e0d33e8043cf40192203203a40ca29c

Nextcloud drains their battery. Users consider uninstalling the

• File sync can be energy-greedy. Send large files to the server, long 3G/4G

Energy requirements vary depending on context and user. some

Syncing disabled	() 	14:30 3
Unified Inbox All messages in unified folders		• 2
All messages All messages in searchable folders	★ 1	• 3
Personal $\bigstar 1$	• 1	
Work 1.5MB	• 2	
Club 225.9КВ		
Q C ➡+ +		:

• Some users noticed that K-9 mail was spending more energy than usual.

• Some users noticed that K-9 mail was spending more energy than usual.

- energy than usual.
- apps. IMAP IDLE protocol for real-time notifications.

Some users noticed that K-9 mail was spending more

 A user that was having issues with a personal mail server noticed that K-9 mail was one of the most energy-greedy

- energy than usual.
- **apps. IMAP IDLE** protocol for real-time notifications.
- retries later.

Some users noticed that K-9 mail was spending more

 A user that was having issues with a personal mail server noticed that K-9 mail was one of the most energy-greedy

When connection is not possible the app automatically

Example case: K-9 mail

- energy than usual.
- apps. IMAP IDLE protocol for real-time notifications.
- retries later.
- https://github.com/k9mail/k-9/commit/ 86f3b28f79509d1a4d613eb39f60603e08579ea3

Some users noticed that K-9 mail was spending more

 A user that was having issues with a personal mail server noticed that K-9 mail was one of the most energy-greedy

• When connection is not possible the app automatically

Example case: K-9 mail

- energy than usual.
- apps. IMAP IDLE protocol for real-time notifications.
- retries later.
- https://github.com/k9mail/k-9/commit/ 86f3b28f79509d1a4d613eb39f60603e08579ea3

Some users noticed that K-9 mail was spending more

 A user that was having issues with a personal mail server noticed that K-9 mail was one of the most energy-greedy

• When connection is not possible the app automatically

Which programming languages are most energy efficient?

https://sites.google.com/view/energy-efficiency-languages

Energy Efficiency across Programming Languages

How Do Energy, Time, and Memory Relate?

Rui Pereira HASLab/INESC TEC Universidade do Minho, Portugal ruipereira@di.uminho.pt

Jácome Cunha

NOVA LINCS, DI, FCT

Univ. Nova de Lisboa, Portugal

jacome@fct.unl.pt

Marco Couto HASLab/INESC TEC Universidade do Minho, Portugal marco.l.couto@inesctec.pt

João Paulo Fernandes Release/LISP, CISUC Universidade de Coimbra, Portugal jpf@dei.uc.pt

Francisco Ribeiro, Rui Rua HASLab/INESC TEC Universidade do Minho, Portugal fribeiro@di.uminho.pt rrua@di.uminho.pt

João Saraiva HASLab/INESC TEC Universidade do Minho, Portugal saraiva@di.uminho.pt

Abstract

This paper presents a study of the runtime, memory usage and energy consumption of twenty seven well-known software languages. We monitor the performance of such languages using ten different programming problems, expressed in each of the languages. Our results show interesting findings, such as, slower/faster languages consuming less/more energy, and how memory usage influences energy consumption. We show how to use our results to provide software engineers support to decide which language to use when energy efficiency is a concern.

CCS Concepts \cdot Software and its engineering \rightarrow Software performance; General programming languages;

Keywords Energy Efficiency, Programming Languages, Language Benchmarking, Green Software

ACM Reference Format:

Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha, João Paulo Fernandes, and João Saraiva. 2017. Energy Efficiency across Programming Languages: How Do Energy, Time, and Memory Relate?. In Proceedings of 2017 ACM SIGPLAN International Conference on Software Language Engineering (SLE'17). ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3136014.3136031

1 Introduction

Software language engineering provides powerful techniques and tools to design, implement and evolve software languages. Such techniques aim at improving programmers

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

SLE'17, October 23-24, 2017, Vancouver, Canada © 2017 Association for Computing Machinery. ACM ISBN 978-1-4503-5525-4/17/10...\$15.00 https://doi.org/10.1145/3136014.3136031

productivity - by incorporating advanced features in the language design, like for instance powerful modular and type systems - and at efficiently execute such software - by developing, for example, aggressive compiler optimizations. Indeed, most techniques were developed with the main goal of helping software developers in producing faster programs. In fact, in the last century *performance* in software languages was in almost all cases synonymous of fast execution time (embedded systems were probably the single exception).

In this century, this reality is quickly changing and software energy consumption is becoming a key concern for computer manufacturers, software language engineers, programmers, and even regular computer users. Nowadays, it is usual to see mobile phone users (which are powerful computers) avoiding using CPU intensive applications just to save battery/energy. While the concern on the computers' energy efficiency started by the hardware manufacturers, it quickly became a concern for software developers too [28]. In fact, this is a recent and intensive area of research where several techniques to analyze and optimize the energy consumption of software systems are being developed. Such techniques already provide knowledge on the energy efficiency of data structures [15, 27] and android language [25], the energy impact of different programming practices both in mobile [18, 22, 31] and desktop applications [26, 32], the energy efficiency of applications within the same scope [2, 17], or even on how to predict energy consumption in several software systems [4, 14], among several other works.

An interesting question that frequently arises in the software energy efficiency area is whether a faster program is also an energy efficient program, or not. If the answer is yes, then optimizing a program for speed also means optimizing it for energy, and this is exactly what the compiler construction community has been hardly doing since the very beginning of software languages. However, energy consumption does not depends only on execution time, as shown in the equation $E_{nergy} = T_{ime} \times P_{ower}$. In fact, there are several research works showing different results regarding

256

The Computer Language Benchmarks Game

<u>https://edu.nl/9fxcv</u>

Benchmark	Description	Input
n-body	Double precision N-body simulation	50M
fannkuch- redux	Indexed access to tiny integer sequence	12
spectral- norm	Eigenvalue using the power method	5,500
mandelbrot	Generate Mandelbrot set portable bitmap file	16,000
pidigits	Streaming arbitrary precision arithmetic	
regex-redux	Match DNA 8mers and	fasta
l egez l euux	substitute magic patterns	output
fasta	Generate and write random DNA sequences	25M
k-nucleotide	Hashtable update and	fasta
K-HUCIEULIUE	k-nucleotide strings	output
reverse-	Read DNA sequences, write	fasta
complement	their reverse-complement	output
binary-trees	Allocate, traverse and	
chameneos- redux	Symmetrical thread rendezvous requests	6M
meteor- contest	Search for solutions to shape packing puzzle	2,098
thread-ring	Switch from thread to thread passing one token	50M

(Pereira, 2017)

	Energy	
(c) C	1.00	(c) C
(c) Rust	1.03	(c) Rus
(c) C++	1.34	(c) C+
(c) Ada	1.70	(c) Ada
(v) Java	1.98	(v) Jav
(c) Pascal	2.14	(c) Cha
(c) Chapel	2.18	(c) Go
(v) Lisp	2.27	(c) Pas
(c) Ocaml	2.40	(c) Oca
(c) Fortran	2.52	(v) C#
(c) Swift	2.79	(v) Lis
(c) Haskell	3.10	(c) Has
(v) C#	3.14	(c) Swi
(c) Go	3.23	(c) For
(i) Dart	3.83	(v) F#
(v) F#	4.13	(i) Java
(i) JavaScript	4.45	(i) Dar
(v) Racket	7.91	(v) Rac
(i) TypeScript	21.50	(i) Hac
(i) Hack	24.02	(i) PHI
(i) PHP	29.30	(v) Erl
(v) Erlang	42.23	(i) Jrul
(i) Lua	45.98	(i) Typ
(i) Jruby	46.54	(i) Rub
(i) Ruby	69.91	(i) Perl
(i) Python	75.88	(i) Pyt
(i) Perl	79.58	(i) Lua

(Pereira, 2017)

https://sites.google.com/view/energy-efficiency-languages

	Time		Mb
	1.00	(c) Pascal	1.00
ust	1.04	(c) Go	1.05
++	1.56	(c) C	1.17
da	1.85	(c) Fortran	1.24
va	1.89	(c) C++	1.34
hapel	2.14	(c) Ada	1.47
0	2.83	(c) Rust	1.54
ascal	3.02	(v) Lisp	1.92
caml	3.09	(c) Haskell	2.45
#	3.14	(i) PHP	2.57
sp	3.40	(c) Swift	2.71
askell	3.55	(i) Python	2.80
vift	4.20	(c) Ocaml	2.82
ortran	4.20	(v) C#	2.85
#	6.30	(i) Hack	3.34
vaScript	6.52	(v) Racket	3.52
art	6.67	(i) Ruby	3.97
acket	11.27	(c) Chapel	4.00
ack	26.99	(v) F#	4.25
ΗP	27.64	(i) JavaScript	4.59
rlang	36.71	(i) TypeScript	4.69
uby	43.44	(v) Java	6.01
vpeScript	46.20	(i) Perl	6.62
ıby	59.34	(i) Lua	6.72
rl	65.79	(v) Erlang	7.20
thon	71.90	(i) Dart	8.64
la	82.91	(i) Jruby	19.84

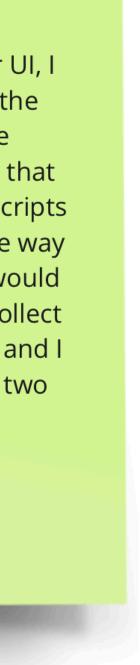
	Fnorm
	Energy
(c) C	1.00
(c) Rust	1.03
(c) C++	1.34
(c) Ada	1.70
(v) Java	1.98
(c) Pascal	2.14
(c) Chapel	2.18
(v) Lisp	2.27
(c) Ocaml	2.40
(c) Fortran	2.52
(c) Swift	2.79
(c) Haskell	3.10
(v) C#	3.14
(c) Go	3.23
(i) Dart	3.83
(v) F#	4.13
(i) JavaScript	4.45
(v) Racket	7.91
(i) TypeScript	21.50
(i) Hack	24.02
(i) PHP	29.30
(v) Erlang	42.23
(i) Lua	45.98
(i) Jruby	46.54
(i) Ruby	69.91
(i) Python	75.88
(i) Perl	79.58
	I]

(c) C
(c) Rus
(c) C+
(c) Ads
(v) Jav
(c) Chas
(c) Chas
(c) Cas
<l

- (i) Java
 (i) Dara
 (v) Raa
 (i) Haa
 (i) Haa
 (i) PH
 (i) PH
 (i) Jru
 (i) Typ
 (i) Rula
 (i) Per

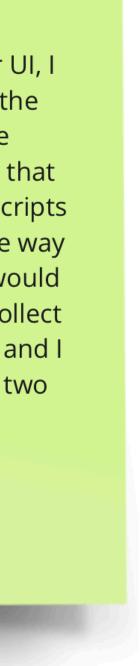
- (i) Py
- (i) Lua

(Pereira, 2017)


https://sites.google.com/view/energy-efficiency-languages

	Time		Mb
	1.00	(c) Pascal	1.00
ust	1.04	(c) Go	1.05
++	1.56	(c) C	1.17
da	1.85	(c) Fortran	1.24
va	1.89	(c) C++	1.34
hapel	2.14	(c) Ada	1.47
0	2.83	(c) Rust	1.54
ascal	3.02	(v) Lisp	1.92
caml	3.09	(c) Haskell	2.45
#	3.14	(i) PHP	2.57
sp	3.40	(c) Swift	2.71
askell	3.55	(i) Python	2.80
vift	4.20	(c) Ocaml	2.82
ortran	4.20	(v) C#	2.85
#	6.30	(i) Hack	3.34
vaScript	6.52	(v) Racket	3.52
art	6.67	(i) Ruby	3.97
acket	11.27	(c) Chapel	4.00
ack	26.99	(v) F#	4.25
ΗP	27.64	(i) JavaScript	4.59
rlang	36.71	(i) TypeScript	4.69
uby	43.44	(v) Java	6.01
vpeScript	46.20	(i) Perl	6.62
ıby	59.34	(i) Lua	6.72
rl	65.79	(v) Erlang	7.20
thon	71.90	(i) Dart	8.64
la	82.91	(i) Jruby	19.84

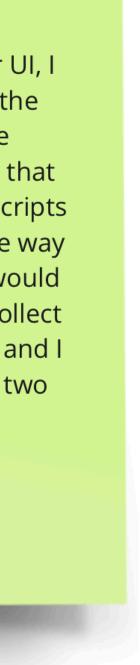
To measure the pattern Dark Color UI, I would create two UIs themes for the same app and I would generate automated user interaction scripts that would work for 10 minutes. These scripts would have to run in the exact same way throughout multiple executions. I would use an energy profiler that would collect energy data during the experiment and I would compare the data from the two UIs.


Check the Catalog of Energy Patterns for Mobile Apps. https://tqrg.github.io/energy-patterns/

To measure the pattern Dark Color UI, I would create two UIs themes for the same app and I would generate automated user interaction scripts that would work for 10 minutes. These scripts would have to run in the exact same way throughout multiple executions. I would use an energy profiler that would collect energy data during the experiment and I would compare the data from the two Uls.

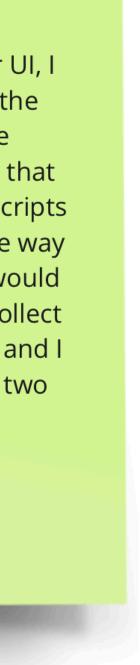
Luís Cruz

1



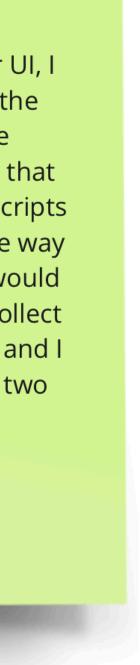
- Check the Catalog of Energy Patterns for Mobile Apps. https://tqrg.github.io/energy-patterns/
- Choose one energy pattern and do one of the following exercises (max. 500 chars):

To measure the pattern Dark Color UI, I would create two UIs themes for the same app and I would generate automated user interaction scripts that would work for 10 minutes. These scripts would have to run in the exact same way throughout multiple executions. I would use an energy profiler that would collect energy data during the experiment and I would compare the data from the two Uls.



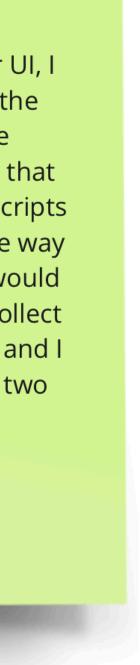
- Check the Catalog of Energy Patterns for Mobile Apps. https://tqrg.github.io/energy-patterns/
- Choose one energy pattern and do one of the following exercises (max. 500 chars):
 - a) Explain how the pattern would help in one of your previous projects. Sticky note in yellow (preferably).

To measure the pattern Dark Color UI, I would create two UIs themes for the same app and I would generate automated user interaction scripts that would work for 10 minutes. These scripts would have to run in the exact same way throughout multiple executions. I would use an energy profiler that would collect energy data during the experiment and I would compare the data from the two Uls.



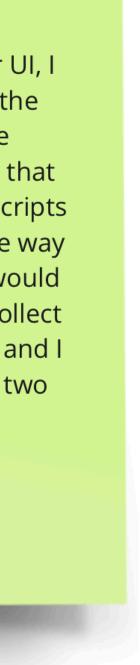
- Check the Catalog of Energy Patterns for Mobile Apps. https://tqrg.github.io/energy-patterns/
- Choose one energy pattern and do one of the following exercises (max. 500 chars):
 - a) Explain how the pattern would help in one of your previous projects. Sticky note in yellow (preferably).
 - b) Explain how would you measure the energy-improvement from a particular pattern. Sticky note in green (preferably).

To measure the pattern Dark Color UI, I would create two UIs themes for the same app and I would generate automated user interaction scripts that would work for 10 minutes. These scripts would have to run in the exact same way throughout multiple executions. I would use an energy profiler that would collect energy data during the experiment and I would compare the data from the two Uls.



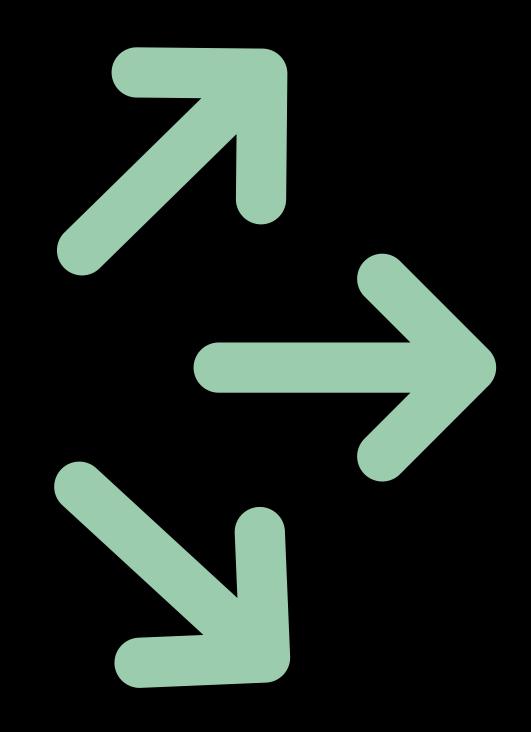
- Check the Catalog of Energy Patterns for Mobile Apps. https://tqrg.github.io/energy-patterns/
- Choose one energy pattern and do one of the following exercises (max. 500 chars):
 - a) Explain how the pattern would help in one of your previous projects. Sticky note in yellow (preferably).
 - b) Explain how would you measure the energy-improvement from a particular pattern. Sticky note in green (preferably).
- Read some of your colleague's answers and upvote your favourite with the emoji 👍.

To measure the pattern Dark Color UI, I would create two UIs themes for the same app and I would generate automated user interaction scripts that would work for 10 minutes. These scripts would have to run in the exact same way throughout multiple executions. I would use an energy profiler that would collect energy data during the experiment and I would compare the data from the two Uls.



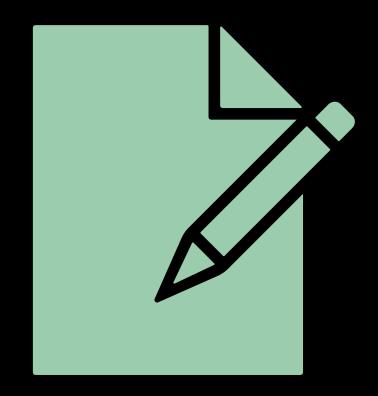
- Check the Catalog of Energy Patterns for Mobile Apps. https://tqrg.github.io/energy-patterns/
- Choose one energy pattern and do one of the following exercises (max. 500 chars):
 - a) Explain how the pattern would help in one of your previous projects. Sticky note in yellow (preferably).
 - b) Explain how would you measure the energy-improvement from a particular pattern. Sticky note in green (preferably).
- Read some of your colleague's answers and upvote your favourite with the emoji 👍.
- Miro board: https://edu.nl/8b639

To measure the pattern Dark Color UI, I would create two UIs themes for the same app and I would generate automated user interaction scripts that would work for 10 minutes. These scripts would have to run in the exact same way throughout multiple executions. I would use an energy profiler that would collect energy data during the experiment and I would compare the data from the two Uls.



Green Open Field

- Several research opportunities. Growing niche.
- Integrate systems with energy consumption feedback. (Inform users)
- Energy-efficiency at different levels. API, programming language, IDE, user, developer, etc.
- Impact of different architectures. Controlling for implementation, hardware and feature set is not trivial.
- Domain-specific energy patterns. So far, only mobile.
- Green AI, E-waste, Green deFi, Green Mobile Computing...
- Many initiatives are emerging to address Sustainable IT: <u>ClimateAction.tech;</u> <u>#LetsGreenTheWeb, TheGreenWebFoundation, #11at11, etc.</u>



Assignment

- A) Analyze the change history of the project and find code changes that are related to green computing. Present and discuss the rationale behind those changes.
- B) Recommend energy improvements to be implemented in the project (development, source, infrastructure). Implement them, if possible.
- C) Measure the energy consumption of potential hotspots. (Using an energy profiler)

Output: Two-page essay with all the rationale behind the study

- Critical thinking is a big plus. A few things to help:
 - Is it always possible to reduce energy consumption?
 - What are the trade-offs of improving energy efficiency?
 - What are the implications on UX or business metrics?
 - Would automation tools help?
 - What is missing in the project to improve energy efficiency?

Wrap-up

- What is Sustainable Software
- What is Green Software?
- How can we measure energy consumption?
- engineering?
- What is an energy pattern?
- efficiency?

What are the sources of energy consumption in software

What are the common trade-offs when improving energy

Architecting for Sustainability Software Architecture (IN4315)

TUDelft

<u>@luismcruz</u>

L.Cruz@tudelft.nl

<u>https://luiscruz.github.io/</u>