%
TUDelft

Architecting for Sustainability

Software Architecture (IN4315)

YW @luismcruz
N4 L.Cruz@tudelft.nl
@% https://luiscruz.github.io/

https://twitter.com/luismcruz
http://luiscruz.github.io
mailto:L.Cruz@tudelft.nl?subject=Green%20Software%20Lecture%20TUDelft

4 Delft
TUDelft &y

If you are worried about someone or you are in need of guidance yourself,
don't wait. We may not physically be together at EWI but we are a community
In which there is always someone to talk to. You can contact:

- Your own academic counsellor by making an appointment here or writing an email to
ac-msc-eemcs@tudelft.nl

- One of the student psychologists at psychologen@tudelft.nl

- Your own GP or the SGZ.

- There is also a hotline for suicide prevention: www.113.nl or call 0800-0113 (this is
anonymous)

- Is there an emergency on campus? Call 015 — 278 8888 of 112 (24/7)

- MoTiv has group and individual consultations - call 015 2006060 (16:00 — 18:00 en 20:00 —
22:00)

4 Delft
TUDelft &

We are all looking for a bit of balance within the limitations of the current
situation. Variety is, after all, the spice of life and this not only applies to food!

How do you balance between studying and time off? Finding time to enjoy your courses,
getting to know people in a project, managing your time: you can find all kinds of tips, tools
and support at TUD’s wellbeing and study page.

Are you looking for online social events to meet up with fellow students? Check out
CH’s calendar, ETV's calendar or Delft/SEA. Activities are in English and open to everybody.

Looking for ways to energize yourself by trying something new? There is a well being week
with all kinds of different activities starting from February onwards. X has all kinds of online

courses on offer, also the fields and courts are open again. You can even go to a Gardening Quiz.
Also, MoTiv offers inspiration workshops in May.

Opening up and talking to the people around you is a vital part of keeping your perspective.
Finding students to work together with, meeting up frequently to check in on each other. For
practical tips on taking initiative and finding balance between studying and time off: you are
also welcome to make an appointment with an academic counsellor at EWI.

Universidade do Minho

a do mvaro 4
TUDelft

Assistant Prof.

U

LISBOA

Full Stack Ph.D. in CS -
developer Lecturer in SE Energy Efficiency in n SE -
| @
® ® Mobile Apps Scientific
® @ ™ Manager of
Started Ph.D. AldFintech
2006-11 2015 5018 2019 Research
2013 2017 2019 2020—...
@ @ o @
BSc+MSc Mobile Developer Visiting Postdoctoral
in Software Engineering + ML Engineer Researcher Researcher

e 2
[BPORTO parc ElEsEl TUDelft

FE|JP FACULDADE DE ENGENHARIA
UNIVERSIDADE DO PORTO A Xerox Company

Al for Fintech Research (AFR

Al for Fintech Research (AFR

e Collaboration between ING and TU Delft.

https://se.ewi.tudelft.nl/ai4fintech/
https://twitter.com/Ai4Fintech

Al for Fintech Research (AFR)

e Collaboration between ING and TU Delft.

* Artificial Intelligence, Data Analytics, and Software Analytics in the
context of FinTech.

https://se.ewi.tudelft.nl/ai4fintech/
https://twitter.com/Ai4Fintech

Al for Fintech Research (AFR)

e Collaboration between ING and TU Delft.

* Artificial Intelligence, Data Analytics, and Software Analytics in the
context of FinTech.

o Officially started in January 2020.

',ﬂ

5

https://se.ewi.tudelft.nl/ai4fintech/
https://twitter.com/Ai4Fintech

Al for Fintech Research (AFR)

Collaboration between ING and TU Delft.

Artificial Intelligence, Data Analytics, and Software Analytics in the

context of FinTech.
Officially started in January 2020.

11 research tracks, 5 years.

5

https://se.ewi.tudelft.nl/ai4fintech/
https://twitter.com/Ai4Fintech

Al for Fintech Research (AFR)

Collaboration between ING and TU Delft.

Artificial Intelligence, Data Analytics, and Software Analytics in the
context of FinTech.

Officially started in January 2020.
11 research tracks, 5 years.

Website: https://se.ewi.tudelft.nl/ai4fintech/

5

https://se.ewi.tudelft.nl/ai4fintech/
https://twitter.com/Ai4Fintech

Al for Fintech Research (AFR)

Collaboration between ING and TU Delft.

Artificial Intelligence, Data Analytics, and Software Analytics in the
context of FinTech.

Officially started in January 2020.
11 research tracks, 5 years.

Website: https://se.ewi.tudelft.nl/ai4fintech/

Twitter: @Ai4Fintech

5

https://se.ewi.tudelft.nl/ai4fintech/
https://twitter.com/Ai4Fintech

Outline

1. Sustainable Software Engineering.

Outline

1. Sustainable Software Engineering. 2. Measuring Energy Consumption.

Outline

1. Sustainable Software Engineering. 2. Measuring Energy Consumption.

Outline

3. Energy Patterns
(Additionally/Maybe: Energy-efficient
Programming Languages)

1. Sustainable Software Engineering. 2. Measuring Energy Consumption.

Outline

3. Energy Patterns
(Additionally/Maybe: Energy-efficient
Programming Languages)

Software Sustainabillity

Sustainability Design and Software:
The Karlskrona Manifesto

Christoph Becker
Faculty of Information
University of Toronto
Toronto, ON, Canada
christoph.becker @utoronto.ca

Ruzanna Chitchyan
Dept of Computer Science
University of Leicester
Leicester, UK
rc256 @leicester.ac.uk

Birgit Penzenstadler
Institute for Software Research
University of California, Irvine

Irvine, California, US

bpenzens@uci.edu

Norbert Seyff
Dept of Informatics
University of Zurich
Zurich, Switzerland

seyff@ifi.uzh.ch

Abstract—Sustainability has emerged as a broad concern for
society. Many engineering disciplines have been grappling with
challenges in how we sustain technical, social and ecological
systems. In the software engineering community, for example,
maintainability has been a concern for a long time. But too
often, these issues are treated in isolation from one another.
Misperceptions among practitioners and research communities
persist, rooted in a lack of coherent understanding of sustain-
ability, and how it relates to software systems research and
practice. This article presents a cross-disciplinary initiative to
create a common ground and a point of reference for the
global community of research and practice in software and
sustainability, to be used for effectively communicating key
issues, goals, values and principles of sustainability design for
software-intensive systems. The centrepiece of this effort is the
Karlskrona Manifesto for Sustainability Design, a vehicle for
a much needed conversation about sustainability within and
beyond the software community, and an articulation of the
fundamental principles underpinning design choices that affect
sustainability. We describe the motivation for developing this
manifesto, including some considerations of the genre of the
manifesto as well as the dynamics of its creation. We illustrate the
collaborative reflective writing process and present the current
edition of the manifesto itself. We assess immediate implications
and applications of the articulated principles, compare these to
current practice, and suggest future steps.

I. INTRODUCTION

It is clear that society is facing major sustainability chal-
lenges that require long-term, joined-up thinking. How do we
sustain our technical infrastructures, given how much we rely
on them for everything from communication and navigation
through to storing health records, identifying security threats,
and keeping the lights on? How do we sustain prosperity in
society, given the erosion of trust in our political institutions
and a growing inequality in ownership of resources? And,
above all, how do we sustain the planetary systems that support
life on earth, in the face of accumulation of pollutants, species
loss, and accelerating climate change?

Dept of Inf. & Computer Science

Steve Easterbrook
Dept of Computer Science
University of Toronto
Toronto, ON, Canada
sme @cs.utoronto.ca

Leticia Duboc
State Univ. of Rio de Janeiro

Rio de Janeiro, Brazil
leticia@ime.uerj.br

Colin C. Venters

School of Computing & Engineering

University of Huddersfield
Huddersfield, UK
c.venters @hud.ac.uk

The discipline of Software Engineering (SE) has a major
role to play in sustainability, because of the extent to which
software systems mediate so many aspects of our lives. How-
ever, software practice has a tendency to focus only on the
immediate effects and tangible benefits of software products
and platforms. SE research has, for the most part, focused on
increasing the reliability, efficiency and cost-benefit relation
of software products for their owners, through a focus on
processes, methods, models and techniques to create, verify
and validate software systems and keep them operational.

The lack of long-term thinking in software engineering
research and practice has been critiqued throughout the history
of the discipline. For example, software maintenance and
evolution were raised as concerns even at the very first
software engineering conference [1]. Since then, efforts to
increase the maintainability of software products and facilitate
their evolution have often focused on improving architecture,
decreasing lifecycle costs and managing technical debt [2].
Neumann has criticized the lack of long-term thinking over
security considerations in SE [3]. For our digital information
assets, some now speak of a ‘digital dark age’ [4], where,
having discarded analog media in preference for digital, we
now find that many of these assets become unreadable, due,
in part, to the rapid lifecycles of software technology.

While progress has been made on design for maintain-
ability of software per se, considerations that extend beyond
immediate software product qualities and user benefits are
generally treated as secondary concerns, optional qualities to
be addressed only after the system under design has been
shown to be a success in terms of technical and/or marketing
criteria. The larger impact of software artefacts on society
and the natural environment is not routinely analyzed. But
by trading off longer-term sustainability questions for shorter-
term success criteria, we accumulate threats to sustainability.
We argue that this trade-off itself is unnecessary. As Neumann

(Becker, 2015)

Software Sustainabillity

e |ndividual. Mental and physical well-being, education,
freedom, self-respect, mobility, agency.

Sustainability Design and Software:
The Karlskrona Manifesto

Christoph Becker Ruzanna Chitchyan
Faculty of Information Dept of Computer Science
University of Toronto University of Leicester
Toronto, ON, Canada Leicester, UK
christoph.becker@utoronto.ca rc256 @leicester.ac.uk

Birgit Penzenstadler Norbert Seyff

Leticia Duboc Steve Easterbrook

Dept of Inf. & Computer Science Dept of Computer Science

State Univ. of Rio de Janeiro University of Toronto
Rio de Janeiro, Brazil Toronto, ON, Canada
leticia@ime.uerj.br sme @cs.utoronto.ca

Colin C. Venters

Institute for Software Research Dept of Informatics School of Computing & Engineering

University of California, Irvine University of Zurich
Irvine, California, US Zurich, Switzerland
bpenzens@uci.edu seyff@ifi.uzh.ch

Abstract—Sustainability has emerged as a broad concern for
society. Many engineering disciplines have been grappling with
challenges in how we sustain technical, social and ecological
systems. In the software engineering community, for example,
maintainability has been a concern for a long time. But too
often, these issues are treated in isolation from one another.
Misperceptions among practitioners and research communities
persist, rooted in a lack of coherent understanding of sustain-
ability, and how it relates to software systems research and
practice. This article presents a cross-disciplinary initiative to
create a common ground and a point of reference for the
global community of research and practice in software and
sustainability, to be used for effectively communicating key
issues, goals, values and principles of sustainability design for
software-intensive systems. The centrepiece of this effort is the
Karlskrona Manifesto for Sustainability Design, a vehicle for
a much needed conversation about sustainability within and
beyond the software community, and an articulation of the
fundamental principles underpinning design choices that affect
sustainability. We describe the motivation for developing this
manifesto, including some considerations of the genre of the
manifesto as well as the dynamics of its creation. We illustrate the
collaborative reflective writing process and present the current
edition of the manifesto itself. We assess immediate implications
and applications of the articulated principles, compare these to
current practice, and suggest future steps.

I. INTRODUCTION

It is clear that society is facing major sustainability chal-
lenges that require long-term, joined-up thinking. How do we
sustain our technical infrastructures, given how much we rely
on them for everything from communication and navigation
through to storing health records, identifying security threats,
and keeping the lights on? How do we sustain prosperity in
society, given the erosion of trust in our political institutions
and a growing inequality in ownership of resources? And,
above all, how do we sustain the planetary systems that support
life on earth, in the face of accumulation of pollutants, species
loss, and accelerating climate change?

University of Huddersfield
Huddersfield, UK
c.venters @hud.ac.uk

The discipline of Software Engineering (SE) has a major
role to play in sustainability, because of the extent to which
software systems mediate so many aspects of our lives. How-
ever, software practice has a tendency to focus only on the
immediate effects and tangible benefits of software products
and platforms. SE research has, for the most part, focused on
increasing the reliability, efficiency and cost-benefit relation
of software products for their owners, through a focus on
processes, methods, models and techniques to create, verify
and validate software systems and keep them operational.

The lack of long-term thinking in software engineering
research and practice has been critiqued throughout the history
of the discipline. For example, software maintenance and
evolution were raised as concerns even at the very first
software engineering conference [1]. Since then, efforts to
increase the maintainability of software products and facilitate
their evolution have often focused on improving architecture,
decreasing lifecycle costs and managing technical debt [2].
Neumann has criticized the lack of long-term thinking over
security considerations in SE [3]. For our digital information
assets, some now speak of a ‘digital dark age’ [4], where,
having discarded analog media in preference for digital, we
now find that many of these assets become unreadable, due,
in part, to the rapid lifecycles of software technology.

While progress has been made on design for maintain-
ability of software per se, considerations that extend beyond
immediate software product qualities and user benefits are
generally treated as secondary concerns, optional qualities to
be addressed only after the system under design has been
shown to be a success in terms of technical and/or marketing
criteria. The larger impact of software artefacts on society
and the natural environment is not routinely analyzed. But
by trading off longer-term sustainability questions for shorter-
term success criteria, we accumulate threats to sustainability.
We argue that this trade-off itself is unnecessary. As Neumann

(Becker, 2015)

Software Sustainabillity

e |ndividual. Mental and physical well-being, education,
freedom, self-respect, mobility, agency.

e Social. social equity, justice, employment, democracy.

Sustainability Design and Software:
The Karlskrona Manifesto

Christoph Becker Ruzanna Chitchyan
Faculty of Information Dept of Computer Science
University of Toronto University of Leicester
Toronto, ON, Canada Leicester, UK
christoph.becker@utoronto.ca rc256 @leicester.ac.uk

Birgit Penzenstadler Norbert Seyff

Leticia Duboc Steve Easterbrook

Dept of Inf. & Computer Science Dept of Computer Science

State Univ. of Rio de Janeiro University of Toronto
Rio de Janeiro, Brazil Toronto, ON, Canada
leticia@ime.uerj.br sme @cs.utoronto.ca

Colin C. Venters

Institute for Software Research Dept of Informatics School of Computing & Engineering

University of California, Irvine University of Zurich
Irvine, California, US Zurich, Switzerland
bpenzens@uci.edu seyff@ifi.uzh.ch

Abstract—Sustainability has emerged as a broad concern for
society. Many engineering disciplines have been grappling with
challenges in how we sustain technical, social and ecological
systems. In the software engineering community, for example,
maintainability has been a concern for a long time. But too
often, these issues are treated in isolation from one another.
Misperceptions among practitioners and research communities
persist, rooted in a lack of coherent understanding of sustain-
ability, and how it relates to software systems research and
practice. This article presents a cross-disciplinary initiative to
create a common ground and a point of reference for the
global community of research and practice in software and
sustainability, to be used for effectively communicating key
issues, goals, values and principles of sustainability design for
software-intensive systems. The centrepiece of this effort is the
Karlskrona Manifesto for Sustainability Design, a vehicle for
a much needed conversation about sustainability within and
beyond the software community, and an articulation of the
fundamental principles underpinning design choices that affect
sustainability. We describe the motivation for developing this
manifesto, including some considerations of the genre of the
manifesto as well as the dynamics of its creation. We illustrate the
collaborative reflective writing process and present the current
edition of the manifesto itself. We assess immediate implications
and applications of the articulated principles, compare these to
current practice, and suggest future steps.

I. INTRODUCTION

It is clear that society is facing major sustainability chal-
lenges that require long-term, joined-up thinking. How do we
sustain our technical infrastructures, given how much we rely
on them for everything from communication and navigation
through to storing health records, identifying security threats,
and keeping the lights on? How do we sustain prosperity in
society, given the erosion of trust in our political institutions
and a growing inequality in ownership of resources? And,
above all, how do we sustain the planetary systems that support
life on earth, in the face of accumulation of pollutants, species
loss, and accelerating climate change?

University of Huddersfield
Huddersfield, UK
c.venters @hud.ac.uk

The discipline of Software Engineering (SE) has a major
role to play in sustainability, because of the extent to which
software systems mediate so many aspects of our lives. How-
ever, software practice has a tendency to focus only on the
immediate effects and tangible benefits of software products
and platforms. SE research has, for the most part, focused on
increasing the reliability, efficiency and cost-benefit relation
of software products for their owners, through a focus on
processes, methods, models and techniques to create, verify
and validate software systems and keep them operational.

The lack of long-term thinking in software engineering
research and practice has been critiqued throughout the history
of the discipline. For example, software maintenance and
evolution were raised as concerns even at the very first
software engineering conference [1]. Since then, efforts to
increase the maintainability of software products and facilitate
their evolution have often focused on improving architecture,
decreasing lifecycle costs and managing technical debt [2].
Neumann has criticized the lack of long-term thinking over
security considerations in SE [3]. For our digital information
assets, some now speak of a ‘digital dark age’ [4], where,
having discarded analog media in preference for digital, we
now find that many of these assets become unreadable, due,
in part, to the rapid lifecycles of software technology.

While progress has been made on design for maintain-
ability of software per se, considerations that extend beyond
immediate software product qualities and user benefits are
generally treated as secondary concerns, optional qualities to
be addressed only after the system under design has been
shown to be a success in terms of technical and/or marketing
criteria. The larger impact of software artefacts on society
and the natural environment is not routinely analyzed. But
by trading off longer-term sustainability questions for shorter-
term success criteria, we accumulate threats to sustainability.
We argue that this trade-off itself is unnecessary. As Neumann

(Becker, 2015)

oftware Sustainabillity

e |ndividual. Mental and physical well-being, education,
freedom, self-respect, mobility, agency.

e Social. social equity, justice, employment, democracy.

e [echnical. Maintenance, innovation, obsolescence, data
integrity.

Sustainability Design and Software:
The Karlskrona Manifesto

Christoph Becker Ruzanna Chitchyan
Faculty of Information Dept of Computer Science
University of Toronto University of Leicester
Toronto, ON, Canada Leicester, UK
christoph.becker@utoronto.ca rc256 @leicester.ac.uk

Birgit Penzenstadler Norbert Seyff

Leticia Duboc Steve Easterbrook

Dept of Inf. & Computer Science Dept of Computer Science

State Univ. of Rio de Janeiro University of Toronto
Rio de Janeiro, Brazil Toronto, ON, Canada
leticia@ime.uerj.br sme @cs.utoronto.ca

Colin C. Venters

Institute for Software Research Dept of Informatics School of Computing & Engineering

University of California, Irvine University of Zurich
Irvine, California, US Zurich, Switzerland
bpenzens@uci.edu seyff@ifi.uzh.ch

Abstract—Sustainability has emerged as a broad concern for
society. Many engineering disciplines have been grappling with
challenges in how we sustain technical, social and ecological
systems. In the software engineering community, for example,
maintainability has been a concern for a long time. But too
often, these issues are treated in isolation from one another.
Misperceptions among practitioners and research communities
persist, rooted in a lack of coherent understanding of sustain-
ability, and how it relates to software systems research and
practice. This article presents a cross-disciplinary initiative to
create a common ground and a point of reference for the
global community of research and practice in software and
sustainability, to be used for effectively communicating key
issues, goals, values and principles of sustainability design for
software-intensive systems. The centrepiece of this effort is the
Karlskrona Manifesto for Sustainability Design, a vehicle for
a much needed conversation about sustainability within and
beyond the software community, and an articulation of the
fundamental principles underpinning design choices that affect
sustainability. We describe the motivation for developing this
manifesto, including some considerations of the genre of the
manifesto as well as the dynamics of its creation. We illustrate the
collaborative reflective writing process and present the current
edition of the manifesto itself. We assess immediate implications
and applications of the articulated principles, compare these to
current practice, and suggest future steps.

I. INTRODUCTION

It is clear that society is facing major sustainability chal-
lenges that require long-term, joined-up thinking. How do we
sustain our technical infrastructures, given how much we rely
on them for everything from communication and navigation
through to storing health records, identifying security threats,
and keeping the lights on? How do we sustain prosperity in
society, given the erosion of trust in our political institutions
and a growing inequality in ownership of resources? And,
above all, how do we sustain the planetary systems that support
life on earth, in the face of accumulation of pollutants, species
loss, and accelerating climate change?

University of Huddersfield
Huddersfield, UK
c.venters @hud.ac.uk

The discipline of Software Engineering (SE) has a major
role to play in sustainability, because of the extent to which
software systems mediate so many aspects of our lives. How-
ever, software practice has a tendency to focus only on the
immediate effects and tangible benefits of software products
and platforms. SE research has, for the most part, focused on
increasing the reliability, efficiency and cost-benefit relation
of software products for their owners, through a focus on
processes, methods, models and techniques to create, verify
and validate software systems and keep them operational.

The lack of long-term thinking in software engineering
research and practice has been critiqued throughout the history
of the discipline. For example, software maintenance and
evolution were raised as concerns even at the very first
software engineering conference [1]. Since then, efforts to
increase the maintainability of software products and facilitate
their evolution have often focused on improving architecture,
decreasing lifecycle costs and managing technical debt [2].
Neumann has criticized the lack of long-term thinking over
security considerations in SE [3]. For our digital information
assets, some now speak of a ‘digital dark age’ [4], where,
having discarded analog media in preference for digital, we
now find that many of these assets become unreadable, due,
in part, to the rapid lifecycles of software technology.

While progress has been made on design for maintain-
ability of software per se, considerations that extend beyond
immediate software product qualities and user benefits are
generally treated as secondary concerns, optional qualities to
be addressed only after the system under design has been
shown to be a success in terms of technical and/or marketing
criteria. The larger impact of software artefacts on society
and the natural environment is not routinely analyzed. But
by trading off longer-term sustainability questions for shorter-
term success criteria, we accumulate threats to sustainability.
We argue that this trade-off itself is unnecessary. As Neumann

(Becker, 2015)

oftware Sustainabillity

Individual. Mental and physical well-being, education,
freedom, self-respect, mobility, agency.

Social. social equity, justice, employment, democracy.

Technical. Maintenance, innovation, obsolescence, data
integrity.

Economic. Wealth creation, prosperity, profitability,
capital investment, income.

Sustainability Design and Software:
The Karlskrona Manifesto

Christoph Becker Ruzanna Chitchyan
Faculty of Information Dept of Computer Science
University of Toronto University of Leicester
Toronto, ON, Canada Leicester, UK
christoph.becker@utoronto.ca rc256 @leicester.ac.uk

Birgit Penzenstadler Norbert Seyff

Leticia Duboc Steve Easterbrook

Dept of Inf. & Computer Science Dept of Computer Science

State Univ. of Rio de Janeiro University of Toronto
Rio de Janeiro, Brazil Toronto, ON, Canada
leticia@ime.uerj.br sme @cs.utoronto.ca

Colin C. Venters

Institute for Software Research Dept of Informatics School of Computing & Engineering

University of California, Irvine University of Zurich
Irvine, California, US Zurich, Switzerland
bpenzens@uci.edu seyff@ifi.uzh.ch

Abstract—Sustainability has emerged as a broad concern for
society. Many engineering disciplines have been grappling with
challenges in how we sustain technical, social and ecological
systems. In the software engineering community, for example,
maintainability has been a concern for a long time. But too
often, these issues are treated in isolation from one another.
Misperceptions among practitioners and research communities
persist, rooted in a lack of coherent understanding of sustain-
ability, and how it relates to software systems research and
practice. This article presents a cross-disciplinary initiative to
create a common ground and a point of reference for the
global community of research and practice in software and
sustainability, to be used for effectively communicating key
issues, goals, values and principles of sustainability design for
software-intensive systems. The centrepiece of this effort is the
Karlskrona Manifesto for Sustainability Design, a vehicle for
a much needed conversation about sustainability within and
beyond the software community, and an articulation of the
fundamental principles underpinning design choices that affect
sustainability. We describe the motivation for developing this
manifesto, including some considerations of the genre of the
manifesto as well as the dynamics of its creation. We illustrate the
collaborative reflective writing process and present the current
edition of the manifesto itself. We assess immediate implications
and applications of the articulated principles, compare these to
current practice, and suggest future steps.

I. INTRODUCTION

It is clear that society is facing major sustainability chal-
lenges that require long-term, joined-up thinking. How do we
sustain our technical infrastructures, given how much we rely
on them for everything from communication and navigation
through to storing health records, identifying security threats,
and keeping the lights on? How do we sustain prosperity in
society, given the erosion of trust in our political institutions
and a growing inequality in ownership of resources? And,
above all, how do we sustain the planetary systems that support
life on earth, in the face of accumulation of pollutants, species
loss, and accelerating climate change?

University of Huddersfield
Huddersfield, UK
c.venters @hud.ac.uk

The discipline of Software Engineering (SE) has a major
role to play in sustainability, because of the extent to which
software systems mediate so many aspects of our lives. How-
ever, software practice has a tendency to focus only on the
immediate effects and tangible benefits of software products
and platforms. SE research has, for the most part, focused on
increasing the reliability, efficiency and cost-benefit relation
of software products for their owners, through a focus on
processes, methods, models and techniques to create, verify
and validate software systems and keep them operational.

The lack of long-term thinking in software engineering
research and practice has been critiqued throughout the history
of the discipline. For example, software maintenance and
evolution were raised as concerns even at the very first
software engineering conference [1]. Since then, efforts to
increase the maintainability of software products and facilitate
their evolution have often focused on improving architecture,
decreasing lifecycle costs and managing technical debt [2].
Neumann has criticized the lack of long-term thinking over
security considerations in SE [3]. For our digital information
assets, some now speak of a ‘digital dark age’ [4], where,
having discarded analog media in preference for digital, we
now find that many of these assets become unreadable, due,
in part, to the rapid lifecycles of software technology.

While progress has been made on design for maintain-
ability of software per se, considerations that extend beyond
immediate software product qualities and user benefits are
generally treated as secondary concerns, optional qualities to
be addressed only after the system under design has been
shown to be a success in terms of technical and/or marketing
criteria. The larger impact of software artefacts on society
and the natural environment is not routinely analyzed. But
by trading off longer-term sustainability questions for shorter-
term success criteria, we accumulate threats to sustainability.
We argue that this trade-off itself is unnecessary. As Neumann

(Becker, 2015)

oftware Sustainabillity

Individual. Mental and physical well-being, education,
freedom, self-respect, mobility, agency.

Social. social equity, justice, employment, democracy.

Technical. Maintenance, innovation, obsolescence, data
integrity.

Economic. Wealth creation, prosperity, profitability,
capital investment, income.

Environmental. Ecosystems, raw resources, climate
change, food production, water, pollution, waste.

Sustainability Design and Software:
The Karlskrona Manifesto

Christoph Becker Ruzanna Chitchyan
Faculty of Information Dept of Computer Science
University of Toronto University of Leicester
Toronto, ON, Canada Leicester, UK
christoph.becker@utoronto.ca rc256 @leicester.ac.uk

Birgit Penzenstadler Norbert Seyff

Leticia Duboc Steve Easterbrook

Dept of Inf. & Computer Science Dept of Computer Science

State Univ. of Rio de Janeiro University of Toronto
Rio de Janeiro, Brazil Toronto, ON, Canada
leticia@ime.uerj.br sme @cs.utoronto.ca

Colin C. Venters

Institute for Software Research Dept of Informatics School of Computing & Engineering

University of California, Irvine University of Zurich
Irvine, California, US Zurich, Switzerland
bpenzens@uci.edu seyff@ifi.uzh.ch

Abstract—Sustainability has emerged as a broad concern for
society. Many engineering disciplines have been grappling with
challenges in how we sustain technical, social and ecological
systems. In the software engineering community, for example,
maintainability has been a concern for a long time. But too
often, these issues are treated in isolation from one another.
Misperceptions among practitioners and research communities
persist, rooted in a lack of coherent understanding of sustain-
ability, and how it relates to software systems research and
practice. This article presents a cross-disciplinary initiative to
create a common ground and a point of reference for the
global community of research and practice in software and
sustainability, to be used for effectively communicating key
issues, goals, values and principles of sustainability design for
software-intensive systems. The centrepiece of this effort is the
Karlskrona Manifesto for Sustainability Design, a vehicle for
a much needed conversation about sustainability within and
beyond the software community, and an articulation of the
fundamental principles underpinning design choices that affect
sustainability. We describe the motivation for developing this
manifesto, including some considerations of the genre of the
manifesto as well as the dynamics of its creation. We illustrate the
collaborative reflective writing process and present the current
edition of the manifesto itself. We assess immediate implications
and applications of the articulated principles, compare these to
current practice, and suggest future steps.

I. INTRODUCTION

It is clear that society is facing major sustainability chal-
lenges that require long-term, joined-up thinking. How do we
sustain our technical infrastructures, given how much we rely
on them for everything from communication and navigation
through to storing health records, identifying security threats,
and keeping the lights on? How do we sustain prosperity in
society, given the erosion of trust in our political institutions
and a growing inequality in ownership of resources? And,
above all, how do we sustain the planetary systems that support
life on earth, in the face of accumulation of pollutants, species
loss, and accelerating climate change?

University of Huddersfield
Huddersfield, UK
c.venters @hud.ac.uk

The discipline of Software Engineering (SE) has a major
role to play in sustainability, because of the extent to which
software systems mediate so many aspects of our lives. How-
ever, software practice has a tendency to focus only on the
immediate effects and tangible benefits of software products
and platforms. SE research has, for the most part, focused on
increasing the reliability, efficiency and cost-benefit relation
of software products for their owners, through a focus on
processes, methods, models and techniques to create, verify
and validate software systems and keep them operational.

The lack of long-term thinking in software engineering
research and practice has been critiqued throughout the history
of the discipline. For example, software maintenance and
evolution were raised as concerns even at the very first
software engineering conference [1]. Since then, efforts to
increase the maintainability of software products and facilitate
their evolution have often focused on improving architecture,
decreasing lifecycle costs and managing technical debt [2].
Neumann has criticized the lack of long-term thinking over
security considerations in SE [3]. For our digital information
assets, some now speak of a ‘digital dark age’ [4], where,
having discarded analog media in preference for digital, we
now find that many of these assets become unreadable, due,
in part, to the rapid lifecycles of software technology.

While progress has been made on design for maintain-
ability of software per se, considerations that extend beyond
immediate software product qualities and user benefits are
generally treated as secondary concerns, optional qualities to
be addressed only after the system under design has been
shown to be a success in terms of technical and/or marketing
criteria. The larger impact of software artefacts on society
and the natural environment is not routinely analyzed. But
by trading off longer-term sustainability questions for shorter-
term success criteria, we accumulate threats to sustainability.
We argue that this trade-off itself is unnecessary. As Neumann

(Becker, 2015)

oftware Sustainabillity

Individual. Mental and physical well-being, education,
freedom, self-respect, mobility, agency.

Social. social equity, justice, employment, democracy.

Technical. Maintenance, innovation, obsolescence, data
integrity.

Economic. Wealth creation, prosperity, profitability,
capital investment, income.

Environmental. Ecosystems, raw resources, climate
change, food production, water, pollution, waste.

Sustainability Design and Software:
The Karlskrona Manifesto

Christoph Becker Ruzanna Chitchyan
Faculty of Information Dept of Computer Science
University of Toronto University of Leicester
Toronto, ON, Canada Leicester, UK
christoph.becker@utoronto.ca rc256 @leicester.ac.uk

Birgit Penzenstadler Norbert Seyff

Leticia Duboc Steve Easterbrook

Dept of Inf. & Computer Science Dept of Computer Science

State Univ. of Rio de Janeiro University of Toronto
Rio de Janeiro, Brazil Toronto, ON, Canada
leticia@ime.uerj.br sme @cs.utoronto.ca

Colin C. Venters

Institute for Software Research Dept of Informatics School of Computing & Engineering

University of California, Irvine University of Zurich
Irvine, California, US Zurich, Switzerland
bpenzens@uci.edu seyff@ifi.uzh.ch

Abstract—Sustainability has emerged as a broad concern for
society. Many engineering disciplines have been grappling with
challenges in how we sustain technical, social and ecological
systems. In the software engineering community, for example,
maintainability has been a concern for a long time. But too
often, these issues are treated in isolation from one another.
Misperceptions among practitioners and research communities
persist, rooted in a lack of coherent understanding of sustain-
ability, and how it relates to software systems research and
practice. This article presents a cross-disciplinary initiative to
create a common ground and a point of reference for the
global community of research and practice in software and
sustainability, to be used for effectively communicating key
issues, goals, values and principles of sustainability design for
software-intensive systems. The centrepiece of this effort is the
Karlskrona Manifesto for Sustainability Design, a vehicle for
a much needed conversation about sustainability within and
beyond the software community, and an articulation of the
fundamental principles underpinning design choices that affect
sustainability. We describe the motivation for developing this
manifesto, including some considerations of the genre of the
manifesto as well as the dynamics of its creation. We illustrate the
collaborative reflective writing process and present the current
edition of the manifesto itself. We assess immediate implications
and applications of the articulated principles, compare these to
current practice, and suggest future steps.

I. INTRODUCTION

It is clear that society is facing major sustainability chal-
lenges that require long-term, joined-up thinking. How do we
sustain our technical infrastructures, given how much we rely
on them for everything from communication and navigation
through to storing health records, identifying security threats,
and keeping the lights on? How do we sustain prosperity in
society, given the erosion of trust in our political institutions
and a growing inequality in ownership of resources? And,
above all, how do we sustain the planetary systems that support
life on earth, in the face of accumulation of pollutants, species
loss, and accelerating climate change?

University of Huddersfield
Huddersfield, UK
c.venters @hud.ac.uk

The discipline of Software Engineering (SE) has a major
role to play in sustainability, because of the extent to which
software systems mediate so many aspects of our lives. How-
ever, software practice has a tendency to focus only on the
immediate effects and tangible benefits of software products
and platforms. SE research has, for the most part, focused on
increasing the reliability, efficiency and cost-benefit relation
of software products for their owners, through a focus on
processes, methods, models and techniques to create, verify
and validate software systems and keep them operational.

The lack of long-term thinking in software engineering
research and practice has been critiqued throughout the history
of the discipline. For example, software maintenance and
evolution were raised as concerns even at the very first
software engineering conference [1]. Since then, efforts to
increase the maintainability of software products and facilitate
their evolution have often focused on improving architecture,
decreasing lifecycle costs and managing technical debt [2].
Neumann has criticized the lack of long-term thinking over
security considerations in SE [3]. For our digital information
assets, some now speak of a ‘digital dark age’ [4], where,
having discarded analog media in preference for digital, we
now find that many of these assets become unreadable, due,
in part, to the rapid lifecycles of software technology.

While progress has been made on design for maintain-
ability of software per se, considerations that extend beyond
immediate software product qualities and user benefits are
generally treated as secondary concerns, optional qualities to
be addressed only after the system under design has been
shown to be a success in terms of technical and/or marketing
criteria. The larger impact of software artefacts on society
and the natural environment is not routinely analyzed. But
by trading off longer-term sustainability questions for shorter-
term success criteria, we accumulate threats to sustainability.
We argue that this trade-off itself is unnecessary. As Neumann

(Becker, 2015)

Individual Sustainabillity

“How Was Your Weekend?” Software Development
Teams Working From Home During COVID-19

Courtney Miller*, Paige Rodeghero?, Margaret-Anne Storey®, Denae FordY and Thomas Zimmermann!

* New College of Florida, FL., USA. Email: courtney.miller17 @ncf.edu
! Clemson University, SC, USA. Email: prodegh@clemson.edu
8 University of Victoria, BC, Canada. Email: mstorey @uvic.ca
9 Microsoft Research, WA, USA. Email: denae@microsoft.com
I Microsoft Research, WA, USA. Email: tzimmer@microsoft.com

Abstract—The mass shift to working at home during the
COVID-19 pandemic radically changed the way many software
development teams collaborate and communicate. To investigate
how team culture and team productivity may also have been
affected, we conducted two surveys at a large software company.
The first, an exploratory survey during the early months of
the pandemic with 2,265 developer responses, revealed that
many developers faced challenges reaching milestones and that
their team productivity had changed. We also found through
qualitative analysis that important team culture factors such as
communication and social connection had been affected. For
example, the simple phrase “How was your weekend?” had
become a subtle way to show peer support.

In our second survey, we conducted a quantitative analysis of
the team cultural factors that emerged from our first survey to
understand the prevalence of the reported changes. From 608
developer responses, we found that 74% of these respondents
missed social interactions with colleagues and 51% reported a
decrease in their communication ease with colleagues. We used
data from the second survey to build a regression model to
identify important team culture factors for modeling team pro-
ductivity. We found that the ability to brainstorm with colleagues,
difficulty communicating with colleagues, and satisfaction with
interactions from social activities are important factors that are
associated with how developers report their software development
team’s productivity. Our findings inform how managers and
leaders in large software companies can support sustained team
productivity during times of crisis and beyond.

I. INTRODUCTION

As COVID-19 spread globally, many companies, including
Google, Microsoft, Twitter, Amazon, and Facebook, instructed
their software developers to go home and work remotely [1].
Entire software development teams that used to work predom-
inantly in-person suddenly had to pivot their work and quickly
establish effective remote collaboration and communication.

Prior research has studied how working from home (WFH)
affects productivity [2], [3]. While regular WFH is not the
same as WFH during a pandemic, the COVID-19 pandemic
has created a natural experiment for researchers to study

WFH-Survey
RQ1: Ability to meet milestones

RQ2: Team culture
RQ3: Peer support

Team-Survey

RQ4: Communication and collaboration
RQ5: Social interactions

Team Productivity Model

RQ6: Modeling team productivity

Fig. 1. Methodology Flow Chart

are recent papers that already began investigating the impacts
of this unique work setting. Bao et al. performed a case
study using automated trace data, along with other metrics,
to determine how productivity has been affected. They found
that productivity was affected in various ways depending on
the productivity metrics used [4]. Ralph et al. performed
an international large-scale questionnaire survey of developer
well-being and productivity and found that productivity and
well-being are closely related, and both are currently suffer-
ing [5]. As insightful as these works are at providing empirical
evidence of factors affecting individual developer productivity,
they lack a deeper understanding of a major responsibility of
industrial software developers—collaborating with a team.

In our work, we identify factors that affect software de-
velopment team productivity such as team culture factors,
including communication, camaraderie, and team cohesion [6],
[7]. We hypothesize these factors are at particular risk of
being disrupted by this unexpected shift to WFH. Thus, we

pve oaled nNe c1l1e () '\

(Miller et al., 2021)

Preprint: https://arxiv.org/pdf/2101.05877.pdf

Individual Sustainabillity

“How Was Your Weekend?” Software Development
Teams Working From Home During COVID-19

Courtney Miller*, Paige Rodeghero?, Margaret-Anne Storey®, Denae FordY and Thomas Zimmermann!

e Survey with 600+ developers

* New College of Florida, FL., USA. Email: courtney.miller17 @ncf.edu
! Clemson University, SC, USA. Email: prodegh@clemson.edu
8 University of Victoria, BC, Canada. Email: mstorey @uvic.ca
9 Microsoft Research, WA, USA. Email: denae@microsoft.com
I Microsoft Research, WA, USA. Email: tzimmer@microsoft.com

Abstract—The mass shift to working at home during the
COVID-19 pandemic radically changed the way many software
development teams collaborate and communicate. To investigate
how team culture and team productivity may also have been
affected, we conducted two surveys at a large software company.
The first, an exploratory survey during the early months of
the pandemic with 2,265 developer responses, revealed that
many developers faced challenges reaching milestones and that
their team productivity had changed. We also found through
qualitative analysis that important team culture factors such as
communication and social connection had been affected. For
example, the simple phrase “How was your weekend?” had
become a subtle way to show peer support.

In our second survey, we conducted a quantitative analysis of
the team cultural factors that emerged from our first survey to
understand the prevalence of the reported changes. From 608
developer responses, we found that 74% of these respondents
missed social interactions with colleagues and 51% reported a
decrease in their communication ease with colleagues. We used
data from the second survey to build a regression model to
identify important team culture factors for modeling team pro-
ductivity. We found that the ability to brainstorm with colleagues,
difficulty communicating with colleagues, and satisfaction with
interactions from social activities are important factors that are
associated with how developers report their software development
team’s productivity. Our findings inform how managers and
leaders in large software companies can support sustained team
productivity during times of crisis and beyond.

I. INTRODUCTION

As COVID-19 spread globally, many companies, including
Google, Microsoft, Twitter, Amazon, and Facebook, instructed
their software developers to go home and work remotely [1].
Entire software development teams that used to work predom-
inantly in-person suddenly had to pivot their work and quickly
establish effective remote collaboration and communication.

Prior research has studied how working from home (WFH)
affects productivity [2], [3]. While regular WFH is not the
same as WFH during a pandemic, the COVID-19 pandemic
has created a natural experiment for researchers to study

WFH-Survey
RQ1: Ability to meet milestones

RQ2: Team culture
RQ3: Peer support

Team-Survey

RQ4: Communication and collaboration
RQ5: Social interactions

Team Productivity Model

RQ6: Modeling team productivity

Fig. 1. Methodology Flow Chart

are recent papers that already began investigating the impacts
of this unique work setting. Bao et al. performed a case
study using automated trace data, along with other metrics,
to determine how productivity has been affected. They found
that productivity was affected in various ways depending on
the productivity metrics used [4]. Ralph et al. performed
an international large-scale questionnaire survey of developer
well-being and productivity and found that productivity and
well-being are closely related, and both are currently suffer-
ing [5]. As insightful as these works are at providing empirical
evidence of factors affecting individual developer productivity,
they lack a deeper understanding of a major responsibility of
industrial software developers—collaborating with a team.

In our work, we identify factors that affect software de-
velopment team productivity such as team culture factors,
including communication, camaraderie, and team cohesion [6],
[7]. We hypothesize these factors are at particular risk of
being disrupted by this unexpected shift to WFH. Thus, we

pve oaled nNe c1l1e () '\ = win ancl _anNSWeTre il

(Miller et al., 2021)

Preprint: https://arxiv.org/pdf/2101.05877.pdf

Individual Sustainabillity

“How Was Your Weekend?” Software Development
Teams Working From Home During COVID-19

Courtney Miller*, Paige Rodeghero?, Margaret-Anne Storey®, Denae FordY and Thomas Zimmermann!

e Survey with 600+ developers

e Pandemic remote work isn’t remote work.

* New College of Florida, FL., USA. Email: courtney.miller17 @ncf.edu
! Clemson University, SC, USA. Email: prodegh@clemson.edu
8 University of Victoria, BC, Canada. Email: mstorey @uvic.ca
9 Microsoft Research, WA, USA. Email: denae@microsoft.com
I Microsoft Research, WA, USA. Email: tzimmer@microsoft.com

Abstract—The mass shift to working at home during the
COVID-19 pandemic radically changed the way many software
development teams collaborate and communicate. To investigate
how team culture and team productivity may also have been
affected, we conducted two surveys at a large software company.
The first, an exploratory survey during the early months of
the pandemic with 2,265 developer responses, revealed that
many developers faced challenges reaching milestones and that
their team productivity had changed. We also found through
qualitative analysis that important team culture factors such as
communication and social connection had been affected. For
example, the simple phrase “How was your weekend?” had
become a subtle way to show peer support.

In our second survey, we conducted a quantitative analysis of
the team cultural factors that emerged from our first survey to
understand the prevalence of the reported changes. From 608
developer responses, we found that 74% of these respondents
missed social interactions with colleagues and 51% reported a
decrease in their communication ease with colleagues. We used
data from the second survey to build a regression model to
identify important team culture factors for modeling team pro-
ductivity. We found that the ability to brainstorm with colleagues,
difficulty communicating with colleagues, and satisfaction with
interactions from social activities are important factors that are
associated with how developers report their software development
team’s productivity. Our findings inform how managers and
leaders in large software companies can support sustained team
productivity during times of crisis and beyond.

I. INTRODUCTION

As COVID-19 spread globally, many companies, including
Google, Microsoft, Twitter, Amazon, and Facebook, instructed
their software developers to go home and work remotely [1].
Entire software development teams that used to work predom-
inantly in-person suddenly had to pivot their work and quickly
establish effective remote collaboration and communication.

Prior research has studied how working from home (WFH)
affects productivity [2], [3]. While regular WFH is not the
same as WFH during a pandemic, the COVID-19 pandemic
has created a natural experiment for researchers to study

WFH-Survey
RQ1: Ability to meet milestones

RQ2: Team culture
RQ3: Peer support

Team-Survey

RQ4: Communication and collaboration
RQ5: Social interactions

Team Productivity Model

RQ6: Modeling team productivity

Fig. 1. Methodology Flow Chart

are recent papers that already began investigating the impacts
of this unique work setting. Bao et al. performed a case
study using automated trace data, along with other metrics,
to determine how productivity has been affected. They found
that productivity was affected in various ways depending on
the productivity metrics used [4]. Ralph et al. performed
an international large-scale questionnaire survey of developer
well-being and productivity and found that productivity and
well-being are closely related, and both are currently suffer-
ing [5]. As insightful as these works are at providing empirical
evidence of factors affecting individual developer productivity,
they lack a deeper understanding of a major responsibility of
industrial software developers—collaborating with a team.

In our work, we identify factors that affect software de-
velopment team productivity such as team culture factors,
including communication, camaraderie, and team cohesion [6],
[7]. We hypothesize these factors are at particular risk of
being disrupted by this unexpected shift to WFH. Thus, we

pve oaled nNe c1l1e () '\ = win ancl _anNSWeTre il

(Miller et al., 2021)

Preprint: https://arxiv.org/pdf/2101.05877.pdf

e Survey with 600+ developers

e Pandemic remote work isn’t remote work.

Individual Sustainabillity

“How Was Your Weekend?” Software Development
Teams Working From Home During COVID-19

Courtney Miller*, Paige Rodeghero?, Margaret-Anne Storey®, Denae FordY and Thomas Zimmermann!

* New College of Florida, FL, USA. Email: courtney.miller17 @ncf.edu
! Clemson University, SC, USA. Email: prodegh@clemson.edu
8 University of Victoria, BC, Canada. Email: mstorey @uvic.ca
9 Microsoft Research, WA, USA. Email: denae@microsoft.com
I Microsoft Research, WA, USA. Email: tzimmer@microsoft.com

“We have lost somewhere between 20%-40%
effectiveness in use of time. In order to keep up, people
are working longer hours. We are starting to see burnout.”

participant 1384

Abstract—The mass shift to working at home during the
COVID-19 pandemic radically changed the way many software
development teams collaborate and communicate. To investigate
how team culture and team productivity may also have been
affected, we conducted two surveys at a large software company.
The first, an exploratory survey during the early months of
the pandemic with 2,265 developer responses, revealed that
many developers faced challenges reaching milestones and that
their team productivity had changed. We also found through
qualitative analysis that important team culture factors such as
communication and social connection had been affected. For
example, the simple phrase “How was your weekend?” had
become a subtle way to show peer support.

In our second survey, we conducted a quantitative analysis of
the team cultural factors that emerged from our first survey to
understand the prevalence of the reported changes. From 608
developer responses, we found that 74% of these respondents
missed social interactions with colleagues and 51% reported a
decrease in their communication ease with colleagues. We used
data from the second survey to build a regression model to
identify important team culture factors for modeling team pro-
ductivity. We found that the ability to brainstorm with colleagues,
difficulty communicating with colleagues, and satisfaction with
interactions from social activities are important factors that are
associated with how developers report their software development
team’s productivity. Our findings inform how managers and
leaders in large software companies can support sustained team
productivity during times of crisis and beyond.

I. INTRODUCTION

As COVID-19 spread globally, many companies, including
Google, Microsoft, Twitter, Amazon, and Facebook, instructed
their software developers to go home and work remotely [1].
Entire software development teams that used to work predom-
inantly in-person suddenly had to pivot their work and quickly
establish effective remote collaboration and communication.

Prior research has studied how working from home (WFH)
affects productivity [2], [3]. While regular WFH is not the
same as WFH during a pandemic, the COVID-19 pandemic
has created a natural experiment for researchers to study

WFH-Survey
RQ1: Ability to meet milestones

RQ2: Team culture
RQ3: Peer support

Team-Survey

RQ4: Communication and collaboration
RQ5: Social interactions

Team Productivity Model

RQ6: Modeling team productivity

Fig. 1. Methodology Flow Chart

are recent papers that already began investigating the impacts
of this unique work setting. Bao et al. performed a case
study using automated trace data, along with other metrics,
to determine how productivity has been affected. They found
that productivity was affected in various ways depending on
the productivity metrics used [4]. Ralph et al. performed
an international large-scale questionnaire survey of developer
well-being and productivity and found that productivity and
well-being are closely related, and both are currently suffer-
ing [5]. As insightful as these works are at providing empirical
evidence of factors affecting individual developer productivity,
they lack a deeper understanding of a major responsibility of
industrial software developers—collaborating with a team.

In our work, we identify factors that affect software de-
velopment team productivity such as team culture factors,
including communication, camaraderie, and team cohesion [6],
[7]. We hypothesize these factors are at particular risk of
being disrupted by this unexpected shift to WFH. Thus, we

pve oalea nNe c1l1e () '\ = win ancl _anNSWeTre il

(Miller et al., 2021)

Preprint: https://arxiv.org/pdf/2101.05877.pdf

Individual Sustainabillity

“How Was Your Weekend?” Software Development
Teams Working From Home During COVID-19

Courtney Miller*, Paige Rodeghero?, Margaret-Anne Storey®, Denae FordY and Thomas Zimmermann!

* New College of Florida, FL., USA. Email: courtney.miller17 @ncf.edu
! Clemson University, SC, USA. Email: prodegh@clemson.edu
8 University of Victoria, BC, Canada. Email: mstorey @uvic.ca
9 Microsoft Research, WA, USA. Email: denae@microsoft.com
I Microsoft Research, WA, USA. Email: tzimmer@microsoft.com

Survey with 600+ developers
Pandemic remote work isn’t remote work.

“We have lost somewhere between 20%-40%
effectiveness in use of time. In order to keep up, people
are working longer hours. We are starting to see burnout.”
(participant 1384)

A few proposed practices:

Build and maintain team culture.

Include social activities as part of “work.”
Be mindful of other people’s time.
Actively work to be inclusive.

Abstract—The mass shift to working at home during the
COVID-19 pandemic radically changed the way many software
development teams collaborate and communicate. To investigate
how team culture and team productivity may also have been
affected, we conducted two surveys at a large software company.
The first, an exploratory survey during the early months of
the pandemic with 2,265 developer responses, revealed that
many developers faced challenges reaching milestones and that
their team productivity had changed. We also found through
qualitative analysis that important team culture factors such as
communication and social connection had been affected. For
example, the simple phrase “How was your weekend?” had
become a subtle way to show peer support.

In our second survey, we conducted a quantitative analysis of
the team cultural factors that emerged from our first survey to
understand the prevalence of the reported changes. From 608
developer responses, we found that 74% of these respondents
missed social interactions with colleagues and 51% reported a
decrease in their communication ease with colleagues. We used
data from the second survey to build a regression model to
identify important team culture factors for modeling team pro-
ductivity. We found that the ability to brainstorm with colleagues,
difficulty communicating with colleagues, and satisfaction with
interactions from social activities are important factors that are
associated with how developers report their software development
team’s productivity. Our findings inform how managers and
leaders in large software companies can support sustained team
productivity during times of crisis and beyond.

I. INTRODUCTION

As COVID-19 spread globally, many companies, including
Google, Microsoft, Twitter, Amazon, and Facebook, instructed
their software developers to go home and work remotely [1].
Entire software development teams that used to work predom-
inantly in-person suddenly had to pivot their work and quickly
establish effective remote collaboration and communication.

Prior research has studied how working from home (WFH)
affects productivity [2], [3]. While regular WFH is not the
same as WFH during a pandemic, the COVID-19 pandemic
has created a natural experiment for researchers to study

WFH-Survey
RQ1: Ability to meet milestones

RQ2: Team culture
RQ3: Peer support

Team-Survey

RQ4: Communication and collaboration
RQ5: Social interactions

Team Productivity Model

RQ6: Modeling team productivity

Fig. 1. Methodology Flow Chart

are recent papers that already began investigating the impacts
of this unique work setting. Bao et al. performed a case
study using automated trace data, along with other metrics,
to determine how productivity has been affected. They found
that productivity was affected in various ways depending on
the productivity metrics used [4]. Ralph et al. performed
an international large-scale questionnaire survey of developer
well-being and productivity and found that productivity and
well-being are closely related, and both are currently suffer-
ing [5]. As insightful as these works are at providing empirical
evidence of factors affecting individual developer productivity,
they lack a deeper understanding of a major responsibility of
industrial software developers—collaborating with a team.

In our work, we identify factors that affect software de-
velopment team productivity such as team culture factors,
including communication, camaraderie, and team cohesion [6],
[7]. We hypothesize these factors are at particular risk of
being disrupted by this unexpected shift to WFH. Thus, we

pve oaled nNe c1l1e () '\ = win ancl _anNSWeTre il

(Miller et al., 2021)

Preprint: https://arxiv.org/pdf/2101.05877.pdf

Green Software Engineering

e What is it?

BItcoin example

No central authority — consensus algorithm.

One transaction — multiple agents to compute a hash that
validates the transaction.

Several discussions regarding social sustainability.

How does bitcoin transactions compare to traditional
centralised transactions w.r.t. environmental impact?

11

BItcoin example

e Annual energy consumption equivalent to Chile’s (77.78 TWh).

e Problem with e-waste.

https://digiconomist.net/bitcoin-energy-consumption

https://cbeci.org/cbeci/comparisons 12

https://digiconomist.net/bitcoin-energy-consumption
https://cbeci.org/cbeci/comparisons

Bitcoin example

higher than the Netherlands’ (120TWh& > 111TWh=)
e Annual energy consumption eguivaientte-Chne s~/ Wny:

e Problem with e-waste.

23 YouTube

https://digiconomist.net/bitcoin-energy-consumption

https://cbeci.org/cbeci/comparisons 12

https://digiconomist.net/bitcoin-energy-consumption
https://cbeci.org/cbeci/comparisons

Bitcoin example

higher than the Netherlands’ (120TWh& > 111TWh=)
e Annual energy consumption eguivaientte-Chne s~/ Wny:

e Problem with e-waste.

y N ” u YouTube

Alternatives?

https://digiconomist.net/bitcoin-energy-consumption

https://cbeci.org/cbeci/comparisons 12

https://digiconomist.net/bitcoin-energy-consumption
https://cbeci.org/cbeci/comparisons

ITraining Neural Networks

(Strubell, 2019)

Energy and Policy Considerations for Deep Learning in NLP

e Deep Learning in NLP.

e Jraining and tuning an NLP model is
comparable to the CO2 emission of a
normal car throughout its lifetime.

e Researchers should prioritize developing

efficient models and hardware.

13

Emma Strubell Ananya Ganesh Andrew McCallum
College of Information and Computer Sciences
University of Massachusetts Amherst
{strubell, aganesh, mccallum}@cs.umass.edu

Abstract

Recent progress in hardware and methodol-
ogy for training neural networks has ushered
in a new generation of large networks trained
on abundant data. These models have ob-
tained notable gains in accuracy across many
NLP tasks. However, these accuracy improve-
ments depend on the availability of exception-
ally large computational resources that neces-
sitate similarly substantial energy consump-
tion. As a result these models are costly to
train and develop, both financially, due to the
cost of hardware and electricity or cloud com-
pute time, and environmentally, due to the car-
bon footprint required to fuel modern tensor
processing hardware. In this paper we bring
this issue to the attention of NLP researchers
by quantifying the approximate financial and
environmental costs of training a variety of re-
cently successful neural network models for
NLP. Based on these findings, we propose ac-
tionable recommendations to reduce costs and
improve equity in NLP research and practice.

1 Introduction

Advances in techniques and hardware for train-
ing deep neural networks have recently en-
abled impressive accuracy improvements across
many fundamental NLP tasks (Bahdanau et al.,
2015; Luong et al.,, 2015; Dozat and Man-
ning, 2017; Vaswani et al., 2017), with the
most computationally-hungry models obtaining
the highest scores (Peters et al., 2018; Devlin et al.,
2019; Radford et al., 2019; So et al., 2019). As
a result, training a state-of-the-art model now re-
quires substantial computational resources which
demand considerable energy, along with the as-
sociated financial and environmental costs. Re-
search and development of new models multiplies
these costs by thousands of times by requiring re-
training to experiment with model architectures
and hyperparameters. Whereas a decade ago most

Consumption COze (Ibs)
Air travel, 1 person, NY <>SF 1984
Human life, avg, 1 year 11,023
American life, avg, 1 year 36,156
Car, avg incl. fuel, 1 lifetime 126,000

Training one model (GPU)

NLP pipeline (parsing, SRL) 39
w/ tuning & experiments 78,468

Transformer (big) 192
w/ neural arch. search 626,155

Table 1: Estimated CO, emissions from training com-
mon NLP models, compared to familiar consumption.!

NLP models could be trained and developed on
a commodity laptop or server, many now require
multiple instances of specialized hardware such as
GPUs or TPUs, therefore limiting access to these
highly accurate models on the basis of finances.
Even when these expensive computational re-
sources are available, model training also incurs a
substantial cost to the environment due to the en-
ergy required to power this hardware for weeks or
months at a time. Though some of this energy may
come from renewable or carbon credit-offset re-
sources, the high energy demands of these models
are still a concern since (1) energy is not currently
derived from carbon-neural sources in many loca-
tions, and (2) when renewable energy is available,
it is still limited to the equipment we have to pro-
duce and store it, and energy spent training a neu-
ral network might better be allocated to heating a
family’s home. It is estimated that we must cut
carbon emissions by half over the next decade to
deter escalating rates of natural disaster, and based
on the estimated CO4 emissions listed in Table 1,
!Sources: (1) Air travel and per-capita consumption:

https://bit.ly/2Hw0xWc; (2) car lifetime: https:
//bit.1ly/2QbrOwl.

3645

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3645-3650
Florence, Italy, July 28 - August 2, 2019. (©2019 Association for Computational Linguistics

Green Fleld

e There is no awareness of the energy consumption.

e There is little information about the energy consumption of

our decisions and practices as software architects and
developers.

e |ittle is known about our footprint as users and developers.
E.g, watch a movie in streaming platforms.

14

Greenpeace Report

e |T sector consumes 7% of global electricity (2017).

e “The continued lack of transparency by many companies
regarding their energy demand and the supply of
electricity powering their data centers remains a CLICKING CLEAN:
significant threat to the sector’s long-term
sustainability.” RAGE

e Report provides an analysis of environmental sustainability | @% q/
of tech providers in different angles. Transparency, Commitment,
Energy Efficiency, Renewable Procurement, Advocacy.

Gary Cook, Jude Lee, Tamina Tsai, Ada Kongn, John Deans, Brian Johnson, Elizabeth Jardim, and Brian Johnson.
2017. Clicking Clean: Who is winning the race to build a green internet? Technical report, Greenpeace.

greenpeace.org

15

Al

Adobe

€.

Alibaba.com

-

oo

==

“amazoncom
S

" web services

y

Final
Grade

20 0O

Clean Energy Index

Natural Gas

16

c.ll

B= Microsoft

NAVER

ORACLE

salesforce

<P 443DS

Tenceni iR

Final
Grade

20 0O

Clean Energy Index

Natural Gas

(Greenpeace, 2017)

Video Streaming

Final

He 0 0O

Clean Energy Index Natural Gas Coal Nuclear

Afreeca.com = @

Amazon Prime @@

ITunes
HBO D, op
Hulu F
Pandora
Netflix
o SoundCloud
Poog.co.kr - @ Snotify
Vevo
G Podbbang
Vimeo D)
YouTube A,

17

HOW tO check for green hosts

datasets.thegreenwebfoundation.org & ‘ SE

home / daily_snapshot

I greendomain

1,448,277 rows

o = T H E

N\ View and edit SQL

This data as json, CSV (advanced) G R E E N W E B

Suggested facets: modified (date)

idV url hosted_by website partner green hosted_by id modified

121 www.koeka.com LeaseWeb www.leaseweb.com 1 156 2020-01- FO U N D AT' 0 N
24T12:04:28

292 pexels.com Cloudflare www.cloudflare.com 1 779 2021-02-

197T21:03:57

302 videos.pexels.com Cloudflare www.cloudflare.com 1 779 2021-01-
30T19:53:45

303 morguefile.com Cloudflare www.cloudflare.com 779 2021-02-
10T22:29:52

331 www.mondovo.com Cloudflare www.cloudflare.com 779 2021-02-
16T15:18:55

e Greendomain database. Provided by The Green Web Foundation.

e https:.//datasets.thegreenwebfoundation.org/daily snapshot/greendomain

18

https://datasets.thegreenwebfoundation.org/daily_snapshot/greendomain

CARBON OFFSETS ALLOW YOU TO BALANCE OUT
YOUR EMISSIONS ‘?

CO2 NET CO2
produced CARBON reduced by
by your trip FOOTPRINT offsetting

e Not really: Carbon offset is CARBON OFFSETS ALLOW YOU TO BALANCE OUT
an easy strategy that allows YOUR EMISSIONS
large polluting services to
simply throw money at the
moment.

e |t practice, it boils down to
creating monocultures of
trees in underdeveloped CO? NET CO2

countries. produced CARBON reduced by
by your tl’ip FOOTPRINT offsetting

7« SUSTAINABLE
(6) TRAVEL INTERNATIONAL

20

Checkpoint 1

From all the things you do as a Computer Science expert,
name a few that you find to be carbon intensive.

Add a sticky note with a brief answer (200 max). Add your
name in the end.

Upvote other answers using the thumbs up & emoiji.

Some sticky notes will be selected for discussion.

- What is the trade-off between carbon intensity and
usefulness?

- How could we measure?

Miro board: https://edu.nl/8b639

21

Zoom meetings with video.
There is a continuous low-
latency internet connection
that transfers large
amounts of video data.
Luis Cruz

edu.nl/8b639

https://edu.nl/8b639

Sources of Energy Consumption

Sources of Energy Consumption

Execution

22

Sources of Energy Consumption

22

Sources of Energy Consumption

Development Infrastructure

22

—How to Measure Energy
Consumption

—How to Measure Energy
Consumption

1. Create a scenario.

—How to Measure Energy
Consumption

2. Execute and collect power data.

—How to Measure Energy
Consumption

3. Implement energy improvement.

—How to Measure Energy
Consumption

4. Execute and collect power data.

—How to Measure Energy
Consumption

5. Analyse and compare results.

Collect Power Data

24

Collect Power Data

e Electricity bill

24

Collect Power Data

e Execution time

24

Collect Power Data

e Estimation tools (a.k.a. energy profilers)

24

Collect Power Data

e Power Monitors (e.g., Monsoon)

24

Estimation tools

Estimation tools

 Windows Energy Estimation Engine (E3)
/-day dump > powercfg.exe /srumutil

https://edu.nl/mdkvc

25

https://edu.nl/mdkvc
https://edu.nl/edcb9
https://edu.nl/xmdvd

Estimation tools

e |ntel RAPL (Linux and Mac).

https://edu.nl/mdkvc
https://edu.nl/edcb9
https://edu.nl/xmdvd

Estimation tools

e Powerstat (Linux) ®
https://edu.nl/edcb9

https://edu.nl/mdkvc
https://edu.nl/edcb9
https://edu.nl/xmdvd

Estimation tools

e Powermetrics (Mac)

https://edu.nl/mdkvc
https://edu.nl/edcb9
https://edu.nl/xmdvd

Estimation tools

O Intel Power Gadget

Power

PKG 11.05 core 6.63 DRAM 0.86

30
25
20

s Mt tedal N

Frequency GHZ
MAx 4.0 RV6 270 ¥iN 11 REg 2.73 RV 0.05 Rgq 0.05

4.0
3.0
2.0

1.0

0.0

Temperature

PKG 65.40 [ax 75 (N 62

100
SRENLY T2/ AN SR AN | SO T4,
60

40

e Intel PowerGadget (Windows and Mac) @
https://edu.nl/xmdvd

Utilization
CORE 13.13

100
80
60
40
20

0

25

https://edu.nl/mdkvc
https://edu.nl/edcb9
https://edu.nl/xmdvd

Estimation tools

O Intel Power Gadget
Power
PKG 11.05 core 6.63 DRAM 0.86

30
25
20
15
10
5
0

Frequency GHZ
CORE CORE CORE CORE GFX GFX
MAX 4.0 AVG 2.70 MIN 1.1 REQ 2.73 AVG 0.05 REQ 0.05

4.0
3.0
2.0

1.0

0.0

Tem peratu e
PKG 65.40 [ax 75 (N 62

100
SRENLY T2/ AN SR AN | SO T4,
60

40

e Intel PowerLog. CLI tool shipped with PowerGadget. Measure any given bash .
command. .
> /Applications/Intel\ Power\ Gadget/PowerLog -cmd <CMD> .

0

25

https://edu.nl/mdkvc
https://edu.nl/edcb9
https://edu.nl/xmdvd

Profiler Live Demo

Profiler Live Demo

20

Intel Power Gadget

11.05 core 6.63 DrRAM 0.86

Frequency GHZ
Max 4.0 2V 2.70 N 11 REq 2.73 Rvg 0.05 Rgq 0.05

4.0
3.0
2.0

1.0

0.0

Temperature

PKG 65.40 Max 75 Min 62

100

@ sl Aumaaali
60

40

Utilization

CORE 13.13

100
80
60
40
20

0

Other estimation tools

Other estimation tools

How is your website
impacting the planet?

e \Website Carbon Calculator. #LetsGreenTheWeb

htt pS ://WWW_ we bS iteca rbo N.cCom Estimate your web page carbon footprint:

Your web page address

Calculate

27

https://www.websitecarbon.com
https://mlco2.github.io/impact/

Other estimation t

e \Website Carbon Calculator. #LetsGreenTheWeb

https.//www.websitecarbon.com

e ML CO2 Impact. Extra: it generates badges in LaTeX for ML projects.

https://mlco?2.qgithub.io/impact/

27

00ISs

Website Carbon Calculator Get the badge! How does it work? FAQ

How is your website
impacting the planet?

Estimate your web page carbon footprint:

Your web page address

eoe (<[] (m) (o]

ML CO2 Impact

Machine Learning Emissions
Calculator

Choose your hardware, runtime and cloud provider to estimate the carbon impact
of your research.

This calculator will give you 2 numbers: the raw carbon emissions produced and
i

th
the approximate offset carbon emissions. The latter number depends on the grid
used by the cloud provider and we are open to update our estimates if anything

Hardware type Hours Used Provider

Tesla V100 T 12 © | Google Cloud Platform %

https://www.websitecarbon.com
https://mlco2.github.io/impact/

Going from Power samples to
Energy Consumption

Going from Power samples to
Energy Consumption

Going from Power samples to
Energy Consumption

Checkpoint 2

30

| have used Intel Power Log:
/Applications/Intel\ Power\
Gadget/PowerLog -duration 10
My processor consumed 68 in 10
seconds.

In an ML project this tool could be used
when training a predictive model to
understand how energy consumption
compares with the accuracy metrics.
Luis Cruz

edu.nl/8b639

Checkpoint 2

 Use an energy profiler of your choice to collect power measurements from

your computer.

30

| have used Intel Power Log:
/Applications/Intel\ Power\
Gadget/PowerLog -duration 10
My processor consumed 68 in 10
seconds.

In an ML project this tool could be used
when training a predictive model to
understand how energy consumption
compares with the accuracy metrics.
Luis Cruz

edu.nl/8b639

https://edu.nl/8b639

|
C | I e C K O I I I-t 2 | have used Intel Power Log:
/Applications/Intel\ Power\

Gadget/PowerLog -duration 10
My processor consumed 68 in 10

 Use an energy profiler of your choice to collect power measurements from seconds.
In an ML project this tool could be used
your Computer. when training a predictive model to

understand how energy consumption
compares with the accuracy metrics.

* Recommended energy profilers: Energy Profilers: Intel Power Gadget TG
(Mac/Windows) or Powerstat (Linux).

edu.nl/8b639

30

https://edu.nl/8b639

Checkpoint 2

 Use an energy profiler of your choice to collect power measurements from
your computer.

* Recommended energy profilers: Energy Profilers: Intel Power Gadget
(Mac/Windows) or Powerstat (Linux).

 Use a sticky note to explain the following: (400 chars max)

30

| have used Intel Power Log:
/Applications/Intel\ Power\
Gadget/PowerLog -duration 10
My processor consumed 68 in 10
seconds.

In an ML project this tool could be used
when training a predictive model to
understand how energy consumption
compares with the accuracy metrics.
Luis Cruz

edu.nl/8b639

https://edu.nl/8b639

Checkpoint 2

Use an energy profiler of your choice to collect power measurements from
your computer.

* Recommended energy profilers: Energy Profilers: Intel Power Gadget
(Mac/Windows) or Powerstat (Linux).

Use a sticky note to explain the following: (400 chars max)

* How you used the tool and what was the final energy consumption.

30

| have used Intel Power Log:
/Applications/Intel\ Power\
Gadget/PowerLog -duration 10
My processor consumed 68 in 10
seconds.

In an ML project this tool could be used
when training a predictive model to
understand how energy consumption
compares with the accuracy metrics.
Luis Cruz

edu.nl/8b639

https://edu.nl/8b639

Checkpoint 2

Use an energy profiler of your choice to collect power measurements from
your computer.

* Recommended energy profilers: Energy Profilers: Intel Power Gadget
(Mac/Windows) or Powerstat (Linux).

Use a sticky note to explain the following: (400 chars max)
* How you used the tool and what was the final energy consumption.

* How the profiler could be used to test energy efficiency in a software
project.

30

| have used Intel Power Log:
/Applications/Intel\ Power\
Gadget/PowerLog -duration 10
My processor consumed 68 in 10
seconds.

In an ML project this tool could be used
when training a predictive model to
understand how energy consumption
compares with the accuracy metrics.
Luis Cruz

edu.nl/8b639

https://edu.nl/8b639

|
C | I e C K O I I I -t 2 | have used Intel Power Log:
/Applications/Intel\ Power\

Gadget/PowerLog -duration 10
My processor consumed 68 in 10

 Use an energy profiler of your choice to collect power measurements from seconds.
In an ML project this tool could be used
your Computer. when training a predictive model to

understand how energy consumption

compares with the accuracy metrics.

* Recommended energy profilers: Energy Profilers: Intel Power Gadget TG
(Mac/Windows) or Powerstat (Linux).

 Use a sticky note to explain the following: (400 chars max)

* How you used the tool and what was the final energy consumption.

* How the profiler could be used to test energy efficiency in a software
project. - _
* Read some of your colleague's answers and upvote your favourite with . I'. .
the emoiji .

Ell

edu.nl/8b639
30

https://edu.nl/8b639

|
C | I e C K O I I I -t 2 | have used Intel Power Log:
/Applications/Intel\ Power\

Gadget/PowerLog -duration 10
My processor consumed 68 in 10

 Use an energy profiler of your choice to collect power measurements from seconds.
In an ML project this tool could be used
your Computer. when training a predictive model to

understand how energy consumption

compares with the accuracy metrics.

* Recommended energy profilers: Energy Profilers: Intel Power Gadget TG
(Mac/Windows) or Powerstat (Linux).

 Use a sticky note to explain the following: (400 chars max)

* How you used the tool and what was the final energy consumption.

* How the profiler could be used to test energy efficiency in a software
project. i '
* Read some of your colleague's answers and upvote your favourite with - l'- .
the emoiji .
e Miro board: https://edu.nl/8b639 EI

edu.nl/8b639
30

https://edu.nl/8b639

e Measuring energy consumption is difficult!

e Solutions?

31

e Measuring energy consumption is difficult!
e Solutions?

e Software Design Pattern
General, reusable solution to a recurrent problem within

a given context in software design.

31

Measuring energy consumption is difficult!
Solutions?

Software Design Pattern
General, reusable solution to a recurrent problem within
a given context in software design.

Energy Pattern
Design pattern to improve energy efficiency.

31

Energy Patterns for Mobile

® ® tqrg.github.io e

© Energy Patterns for Mobile Apps

A visualization with prevalence and co-occurence of patterns can be found here.
(70 This catalog has been accepted to the Journal of Empirical Software Engineering. Check
out the preprint.

< show all patterns

Dark Ul Colors

Provide a dark Ul color theme to save battery
on devices with AMOLED screens.

Context

Screen is one of the major source of power nNEADG
consumption on mobile devices. Apps that require LOP\EM
heavy usage of screen (e.g., reading apps) can have a (PSUM
big impact on battery life. N\ A1 NRC

Solution

Provide a Ul with dark background colors. This is particularly beneficial for mobile devices with
AMOLED screens, which are more energy efficient when displaying dark colors. In some cases,
it might be reasonable to allow users to choose between a light and a dark theme. The dark

theme can also be activated using a special trigger (e.g., when battery is running low).
Display a menu

https://tgrg.github.io/energy-patterns/

32

https://tqrg.github.io/energy-patterns/

Viethodolgy

Viethodolgy

1. App Collection 1783
F-droid @ Curated Lists apps

33

Viethodolgy

1. App Collection 1783
| % Curated Lists apps

. 2. Collect Changes With Potential Interest 0023
/ . * (energy | power |battery) . */ changes

33

Viethodolgy

1. App Collection 1783
F-droid @ Curated Lists apps

. 2. Collect Changes With Potential Interest 0023
/ . * (energy | power |battery) . */ changes

e 3. Manual Refinement of Subjects of 1503
6 Interest changes

33

Viethodolgy

1. App Collection

@ Curated Lists

2. Collect Changes With Potential Interest
/ . * (energy|power |battery) . */

3. Manual Refinement of Subjects of
Interest

4. Thematic Analysis

33

1783
apps

0028
changes

1563
changes

431
reusable
changes

Viethodolgy

1. App Collection

@ Curated Lists
aD 2. Collect Changes With Potential Interest
N / . * (energy|power |battery) . */

e 3. Manual Refinement of Subjects of
G Interest

27 &
" ‘\' . .
(g -ﬁ 4. Thematic Analysis

g 5. Catalog of Energy Patterns

33

1783
apps

0028
changes

1563
changes

431
reusable
changes

22
patterns

B Android

B 0S5

0.03 -

0.02 -

_

—
<
-

0.00

purwWa(] U ‘OUAG [enuey
wiuy R ‘ydern e1ixy ploay
UOT]0RID]UI USDIOS ON
SASeL [eWIoUqy [t
uo1sn, JI0SuUag

uoryn[osal ybnouyg

SI9S() ULIOJU]

1S9g SMOWY 19SS

91e} 9SeaIda(J

ayoe)

suorjeiad(yoleg

sboT ssaaddng

IeN[[9D 19A(0 THIM

9Z1IS 90NPaY

34

Energy Pattern

SSOUaJIRMY JOoMO]
OPOJA 9ARS JoMOJ

[10d I9A0 YUsSid

AIeSS900N USUA\ ATuQ uad(
9[PI-0]1-90kYy

MIOA\ SNOSURIIXH PIOAY
Aela(A9y otwieuA(q
SIO0T0D IN JIed

B Android

B 0S5

Android Apps

11

1] | | . l[
Energy Patterns are more Frequent

0.03 -
0.02 -
0.00

o

purwWa(] U ‘OUAG [enuey
wiuy R ‘ydern eiixy ploAy
UOT]0RID]UI USDIOS ON
SASeL [eWIoUqy [t
uoisn,J JI0Suas

uorn[osal ybnouyg

SI9S() WLIOJU]

1S9g SMOWY 19SS

91e} 9SeaIda(J

ayoe)

suorjeiad(yoleg

sboT ssaaddng

Ie[n[[eD I9A0 THIM

9ZIG 90NpPaY

SSouUaIeMY JOoMOJ

OPOJA 9ARS JoMOJ

[10d I°9A0 Ysid

AIessadaN UaUM ATuO uad(
9[PT1-0]1-99kY

MIOAM SNOdURIIXH PIOAY
Aela(A9y otwieuA(q
SI0100 If] 1ed

34

Energy Pattern

purwWa(] U ‘OUAG [enuey
wiuy R ‘ydern e1ixy ploay
UOT]0RID]UI USDIOS ON

syse], [ewIouqy [y
uo1isn,] J0SuUs8g

B Android

B 0S5

uoryn[osal ybnouyg
SI9S WLIOJU]

1S9g SMOUY JI9S)
91eY 9SeaJda(
ayoer)

suorjeiad(yoleg

sboT ssaaddng

Te[nie)d I8AQ TJIM
9ZIS 20NpPaY

34

Energy Pattern

SsouaIeMy JoMOJ

OPOJA 9ARS JoMOJ

[10d 192A0 Ysnd

AIeSS900N USUA\ ATuQ uad(
9[PI-0]1-90kYy

MIOA\ SNOSURIIXH PIOAY
Ae1o(1 AI119Y OTWRUA(]

SIOTOD 1IN jJ1ed

0.03 -
0.02 -
0.01 -
0.00

0.03 -

0.02 -

_

—
<
-

0.00

DURWA(] U() ‘OUA
wiuy R ‘ydern e1ixy ploay
Uot}oeJolul Uoa.d0S ON

syse], [ewIouqy [y
uo1isn,] J0SuUs8g

PNURLIA

uoryn[osal ybnouyg
SI9S() ULIOJU]

1S9g SMOWY 19SS

91e} 9SeaIda(J

ayoe)

suorjeiad(yoleg

sboT ssaaddng

Ie[n[[eD I9A0 THIM

9ZIS 90NpaYy
SSouUaIeMY JOoMOJ
OPOJA 9ARS JoMOJ

[10d I°9A0 Ysid
AIeSS900N USUA\ ATuQ uad(
9[PT1-0]1-99kY

MIOA\ SNOSURIIXH PIOAY
Aela(A9y otwieuA(q
SI0100 If] 1ed

Energy Pattern

34

-

=xample case: Nextcloud

GETITON

Google Play

»

GET IT ON

\

™ F-Droid

¢

Available on the

App Store

7)

Server address https://...

https://cloud.nextcloud.com

a Secure connection established

Username
john
Password

CONNECT

NEW TO NEXTCLOUD?

~

35

Nextcloud

Documents

Photos

hirschmilch_d...rog_hous.pls

Nextcloud.mp4

Nextcloud.png

Nextcloud Manual.pdf

~

03P P 8 2 1wl 24l 76% W 15:43

Q

=xample case: Nextcloud

 Users complain that sometimes they go on a trip and
Nextcloud drains their battery. Users consider uninstalling the
app when battery life is essential.

36

https://github.com/nextcloud/android/commit/8bc432027e0d33e8043cf40192203203a40ca29c
https://github.com/nextcloud/android/commit/8bc432027e0d33e8043cf40192203203a40ca29c

=xample case: Nextcloud

 Users complain that sometimes they go on a trip and
Nextcloud drains their battery. Users consider uninstalling the
app when battery life is essential.

* File sync can be energy-greedy. Send large files to the server, long 3G/4G
data connections.

36

https://github.com/nextcloud/android/commit/8bc432027e0d33e8043cf40192203203a40ca29c
https://github.com/nextcloud/android/commit/8bc432027e0d33e8043cf40192203203a40ca29c

=xample case: Nextcloud

 Users complain that sometimes they go on a trip and
Nextcloud drains their battery. Users consider uninstalling the
app when battery life is essential.

* File sync can be energy-greedy. Send large files to the server, long 3G/4G
data connections.

* |t is mostly used for backup. No real-time collaboration is needed.

36

https://github.com/nextcloud/android/commit/8bc432027e0d33e8043cf40192203203a40ca29c
https://github.com/nextcloud/android/commit/8bc432027e0d33e8043cf40192203203a40ca29c

=xample case: Nextcloud

 Users complain that sometimes they go on a trip and
Nextcloud drains their battery. Users consider uninstalling the
app when battery life is essential.

* File sync can be energy-greedy. Send large files to the server, long 3G/4G
data connections.

* |t is mostly used for backup. No real-time collaboration is needed.

 Energy requirements vary depending on context and user. Some
days you really need all the battery you can get.

36

https://github.com/nextcloud/android/commit/8bc432027e0d33e8043cf40192203203a40ca29c
https://github.com/nextcloud/android/commit/8bc432027e0d33e8043cf40192203203a40ca29c

=xample case: Nextcloud

 Users complain that sometimes they go on a trip and
Nextcloud drains their battery. Users consider uninstalling the
app when battery life is essential.

* File sync can be energy-greedy. Send large files to the server, long 3G/4G
data connections.

* |t is mostly used for backup. No real-time collaboration is needed.

 Energy requirements vary depending on context and user. Some
days you really need all the battery you can get.

36

https://github.com/nextcloud/android/commit/8bc432027e0d33e8043cf40192203203a40ca29c
https://github.com/nextcloud/android/commit/8bc432027e0d33e8043cf40192203203a40ca29c

=xample case: Nextcloud

 Users complain that sometimes they go on a trip and
Nextcloud drains their battery. Users consider uninstalling the
app when battery life is essential.

* File sync can be energy-greedy. Send large files to the server, long 3G/4G
data connections.

* |t is mostly used for backup. No real-time collaboration is needed.

 Energy requirements vary depending on context and user. Some
days you really need all the battery you can get.

e https://github.com/nextcloud/android/commit/
8bc432027e0d33e8043cf40192203203a40ca29c

36

https://github.com/nextcloud/android/commit/8bc432027e0d33e8043cf40192203203a40ca29c
https://github.com/nextcloud/android/commit/8bc432027e0d33e8043cf40192203203a40ca29c

Example case: K-9 ma

GETITON
» Google Play

=) F-Droid

GETITON

amazgn

E

~

& Accounts
¥ Syncing disabled

Unified Inbox

All messages in unified folders

All messages
All messages in searchable folders

Personal
3.3MB

Work
1.5MB

Club
225.9KB

& Turing Award
“* Syncing disabled

Elements of Interaction

The Paradigms of Programming 3/20/2013

Robert Floyd Today | want to talk about the
paradigms of programming, how they affect our

One Man's View of Computer Science 3/20/2013
Richard Hamming Let me begin with a few
personal words. When one is notified that he has
Computers Then and Now 3/20/2013
Maurice V. Wilkes | do not imagine that many of
the Turing lecturers who will follow me will be
Notation as a Tool of Thought 3/20/2013

Kenneth E. Iverson The importance of
nomenclature, notation, and |dlu1' age as tools of

Can Programming Be Liberated from.. 3/20/2013
John W. Backus Conventional programming
languages are growing ever more enormous, but

Generality in Artificial Intelligence 3/20/2013

John MCCarthy Postscript My 1971 Turing Award
Lecture was entitled "Generality in Artificial

37

—xXample case: K-9 mall

e Some users noticed that K-9 mail was spending more
energy than usual.

38

https://github.com/k9mail/k-9/commit/86f3b28f79509d1a4d613eb39f60603e08579ea3
https://github.com/k9mail/k-9/commit/86f3b28f79509d1a4d613eb39f60603e08579ea3

—xXample case: K-9 mall

e Some users noticed that K-9 mail was spending more
energy than usual.

@

38

https://github.com/k9mail/k-9/commit/86f3b28f79509d1a4d613eb39f60603e08579ea3
https://github.com/k9mail/k-9/commit/86f3b28f79509d1a4d613eb39f60603e08579ea3

—xXample case: K-9 mall

e Some users noticed that K-9 mail was spending more
energy than usual.

@

e A user that was having issues with a personal mail server
noticed that K-9 mail was one of the most energy-greedy
dPPS. IMAP IDLE protocol for real-time notifications.

38

https://github.com/k9mail/k-9/commit/86f3b28f79509d1a4d613eb39f60603e08579ea3
https://github.com/k9mail/k-9/commit/86f3b28f79509d1a4d613eb39f60603e08579ea3

—xXample case: K-9 mall

e Some users noticed that K-9 mail was spending more
energy than usual.

@

e A user that was having issues with a personal mail server
noticed that K-9 mail was one of the most energy-greedy
dPPS. IMAP IDLE protocol for real-time notifications.

e \WWhen connection is not possible the app automatically
retries later.

38

https://github.com/k9mail/k-9/commit/86f3b28f79509d1a4d613eb39f60603e08579ea3
https://github.com/k9mail/k-9/commit/86f3b28f79509d1a4d613eb39f60603e08579ea3

—xXample case: K-9 mall

e Some users noticed that K-9 mail was spending more
energy than usual.

@

e A user that was having issues with a personal mail server
noticed that K-9 mail was one of the most energy-greedy
dPPS. IMAP IDLE protocol for real-time notifications.

e \WWhen connection is not possible the app automatically
retries later.

e https://github.com/k9mail/k-9/commit/
86f3b28f79509d1a4d613eb39f60603e085/7/9¢ea3

38

https://github.com/k9mail/k-9/commit/86f3b28f79509d1a4d613eb39f60603e08579ea3
https://github.com/k9mail/k-9/commit/86f3b28f79509d1a4d613eb39f60603e08579ea3

—xXample case: K-9 mall

e Some users noticed that K-9 mail was spending more
energy than usual.

@

e A user that was having issues with a personal mail server
noticed that K-9 mail was one of the most energy-greedy
dPPS. IMAP IDLE protocol for real-time notifications.

e \WWhen connection is not possible the app automatically
retries later.

e https://github.com/k9mail/k-9/commit/
86f3b28f79509d1a4d613eb39f60603e085/7/9¢ea3

38

https://github.com/k9mail/k-9/commit/86f3b28f79509d1a4d613eb39f60603e08579ea3
https://github.com/k9mail/k-9/commit/86f3b28f79509d1a4d613eb39f60603e08579ea3

Which programming

languages are most energy

efficient?

https://sites.google.com/view/energy-efficiency-languages

39

Energy Efficiency across Programming Languages

How Do Energy, Time, and Memory Relate?

Rui Pereira Marco Couto

Francisco Ribeiro, Rui Rua

HASLab/INESC TEC HASLab/INESC TEC HASLab/INESC TEC
Universidade do Minho, Portugal Universidade do Minho, Portugal Universidade do Minho, Portugal

ruipereira@di.uminho.pt

marco.l.couto@inesctec.pt

fribeiro@di.uminho.pt
rrua@di.uminho.pt

Jacome Cunha Joao Paulo Fernandes Joao Saraiva
NOVA LINCS, DI, FCT Release/LISP, CISUC HASLab/INESC TEC
Univ. Nova de Lisboa, Portugal Universidade de Coimbra, Portugal Universidade do Minho, Portugal
jacome@fct.unl.pt jpf@dei.uc.pt saraiva@di.uminho.pt

Abstract

This paper presents a study of the runtime, memory usage
and energy consumption of twenty seven well-known soft-
ware languages. We monitor the performance of such lan-
guages using ten different programming problems, expressed
in each of the languages. Our results show interesting find-
ings, such as, slower/faster languages consuming less/more
energy, and how memory usage influences energy consump-
tion. We show how to use our results to provide software
engineers support to decide which language to use when
energy efficiency is a concern.

CCS Concepts -« Software and its engineering — Soft-
ware performance; General programming languages;

Keywords Energy Efficiency, Programming Languages, Lan
guage Benchmarking, Green Software

ACM Reference Format:

Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jacome Cunha,
Joao Paulo Fernandes, and Joao Saraiva. 2017. Energy Efficiency
across Programming Languages: How Do Energy, Time, and Mem-
ory Relate?. In Proceedings of 2017 ACM SIGPLAN International
Conference on Software Language Engineering (SLE’17). ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3136014.3136031

1 Introduction

Software language engineering provides powerful techniques
and tools to design, implement and evolve software lan-
guages. Such techniques aim at improving programmers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SLE’17, October 23-24, 2017, Vancouver, Canada

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5525-4/17/10...$15.00
https://doi.org/10.1145/3136014.3136031

productivity - by incorporating advanced features in the lan-
guage design, like for instance powerful modular and type
systems - and at efficiently execute such software - by de-
veloping, for example, aggressive compiler optimizations.
Indeed, most techniques were developed with the main goal
of helping software developers in producing faster programs.
In fact, in the last century performance in software languages
was in almost all cases synonymous of fast execution time
(embedded systems were probably the single exception).

In this century, this reality is quickly changing and soft-
ware energy consumption is becoming a key concern for
computer manufacturers, software language engineers, pro-
grammers, and even regular computer users. Nowadays, it
is usual to see mobile phone users (which are powerful com-
puters) avoiding using CPU intensive applications just to
save battery/energy. While the concern on the computers’
energy efficiency started by the hardware manufacturers, it
quickly became a concern for software developers too [28].
In fact, this is a recent and intensive area of research where
several techniques to analyze and optimize the energy con-
sumption of software systems are being developed. Such
techniques already provide knowledge on the energy effi-
ciency of data structures [15, 27] and android language [25],
the energy impact of different programming practices both in
mobile [18, 22, 31] and desktop applications [26, 32], the en-
ergy efficiency of applications within the same scope [2, 17],
or even on how to predict energy consumption in several
software systems [4, 14], among several other works.

An interesting question that frequently arises in the soft-
ware energy efficiency area is whether a faster program is
also an energy efficient program, or not. If the answer is yes,
then optimizing a program for speed also means optimizing
it for energy, and this is exactly what the compiler con-
struction community has been hardly doing since the very
beginning of software languages. However, energy consump-
tion does not depends only on execution time, as shown
in the equation Eergy = Time X Power- In fact, there are
several research works showing different results regarding

(Pereira, 2017)

https://sites.google.com/view/energy-efficiency-languages

The Computer Language
Benchmarks Game

https://edu.nl/9fxcv

Benchmark
n-body

fannkuch-
redux
spectral-
norm

mandelbrot
pidigits
regex-redux
fasta

k-nucleotide

reverse-
complement

binary-trees

chameneos-
redux
meteor-
contest

thread-ring

Description

Double precision N-body
simulation

Indexed access to tiny integer
sequence

Eigenvalue using the power
method

Generate Mandelbrot set
portable bitmap file

Streaming arbitrary precision
arithmetic

Match DNA 8mers and

substitute magic patterns
Generate and write random

DNA sequences

Hashtable update and
k-nucleotide strings

Read DNA sequences, write

their reverse-complement
Allocate, traverse and 51
deallocate many binary trees
Symmetrical thread rendezvous
requests

6M

Search for solutions to shape
: 2,098
packing puzzle

Switch from thread to thread

. 50M
passing one token

(Pereira, 2017)

https://edu.nl/9fxcv

(Pereira, 2017)

i) Perl

Energy
(c) C 1.00
(¢) Rust 1.03
(c) C 1.34
(c) Ada 1.70
(v) Java 1.98
(c) Pascal 2.14
(c) Chapel 2.18
(v) Lisp 2.27
(c) Ocaml 2.40
(c) Fortran 2.52
(c) Swift 2.79Y
(¢) H(lsl\(11 3.10
(V) C# 3.14
(c) (4() 3.23
(i) Dart 3.83
(v) ."""" 4.13
(i) JavaScript 4.45
(v) Racket 7.91
(i) TypeScript 21.50
(i) Hack 24.02
(i) PHP 29.30
(v) Erlang 42.23
(i) Lua 45.98
(i) Jruby 46.54
(i) Ruby 69.91
(i) Python
(1)

75.88

Time
(c) C 1.00
(c) Rust 1.04
(c) C 1.56
(c) Ada 1.85
(v) Java 1.89
(c) Chapel 2.14
(c) Go 2.83
(c) Pascal 3.02
(c) O (11111 3.09
(v) C# 3.14
(v) Llsp 3.40
(c) Haskell 3.55
(c) Swift 4.20
(c) Fortran 4.20
(v) F# 6.30
(i) JavaScript 6.52
(i) Dart 6.67
(v) Racket 11.27
(i) Hack 26.99
(i) PHP 27.64
(v) Erlang 36.71
(i) Jruby 43.44
(i) TypeScript | 46.20
(i) \111)} 59.34
(i) Perl 65.7Y
(i) Python 71.90
(i) Lua 82.91

Mb

) Lisp
Haskell
i) PHP
c) Swift
i) Python
c) Ocaml

i) Hack
v) Racket

i) Ruby

c) ('he Ape |

v) | ~+

i) .ﬁ]a\ aScript
'ypeScript
v) Java

i) Perl

i) Lua

v) Erlang

i) Dart

i) Jruby

1.00
1 .()5

1.92

https://sites.google.com/view/energy-efficiency-languages

(Pereira, 2017)

dascal

i) JavaSecript
Racket

H vk
) PHP

r) Erlang
) Lua

) Jruby
i) Ruby

i) Pvthon

'ypeScript

Energy
(’c) C 1.00
I{llxt

1.03

7.91
21.50
24.02
29.30
42.23
45.98
46.54
69.91

Mb

Time
(c) C 1.00
(c) Rust 1.04
(c) C 1.56
(c Ada 1.85
(v) Java 1.89
(c) Chapel 2.14
(c) Go 2.83
(c Pd\(al 3.02
(c) Ocaml 3.09
(\ C “‘1 3.14
(v Llsp 3.40
(c) Haskell 3.55
(c) SWift 4.20
(c) Fortran 4.20
(v F# 6.30
(i) JavaScript 6.52
(i) Dart 6.67
(v) Racket 11.27
(i) Hack 26.99
(i) PHP 27.64
(v) Erlang 36.71
(i) Jruby 43.44
(i) TypeScript | 46.20
(i) {ub} 59.34
(i) Perl 65.79Y
(i) | \;'t hon 71.90
(i) Lua 82.91

(

(

(

(c

(

(

(

(v) Lisp

(c) Haskell
(i) PHP
(c) Swift
(i) Python
(c) Ocaml
(V) (:'#
(

(
(1)

(

(

(

(

(

(

(

(

(

(

i) Hack
v) Racket
i) Ruby

C) (h lp(l
\) __4 -4-

v) Java
i) Perl
i) Lua
v) Erlang
i) Dart
i) Jruby

i) J amScript
i) TypeScript

1.00
1 .()5

__.‘))

https://sites.google.com/view/energy-efficiency-languages

C
To measure the pattern Dark Color Ul, |
would create two Uls themes for the
same app and | would generate

automated user interaction scripts that
would work for 10 minutes. These scripts
would have to run in the exact same way
throughout multiple executions. | would
use an energy profiler that would collect
energy data during the experiment and |

would compare the data from the two

Uls.
Luis Cruz

=

=]} il

edu.nl/8b639

42

C
To measure the pattern Dark Color Ul, |
would create two Uls themes for the
same app and | would generate

automated user interaction scripts that
would work for 10 minutes. These scripts

* Check the Catalog of Energy Patterns for Mobile Apps. eIl MRS 0 (0 7 B et S e ey
. _ throughout multiple executions. | would
https://tgrg.qithub.io/energy-patterns/ use an energy profiler that would collect

energy data during the experiment and |
would compare the data from the two

Uls.
Luis Cruz

=

=]} il

edu.nl/8b639

42

https://tqrg.github.io/energy-patterns/
https://edu.nl/8b639

C
To measure the pattern Dark Color Ul, |
would create two Uls themes for the
same app and | would generate

automated user interaction scripts that
would work for 10 minutes. These scripts

* Check the Catalog of Energy Patterns for Mobile Apps. eIl MRS 0 (0 7 B et S e ey
. _ throughout multiple executions. | would
https://tgrg.qithub.io/energy-patterns/ use an energy profiler that would collect

energy data during the experiment and |
would compare the data from the two

* Choose one energy pattern and do one of the following exercises o
(max. 500 chars):

edu.nl/8b639

42

https://tqrg.github.io/energy-patterns/
https://edu.nl/8b639

same app and | would generate
automated user interaction scripts that

C
To measure the pattern Dark Color Ul, |
would create two Uls themes for the

would work for 10 minutes. These scripts

* Check the Catalog of Energy Patterns for Mobile Apps. eIl MRS 0 (0 7 B et S e ey
. _ throughout multiple executions. | would
https://tgrg.qithub.io/energy-patterns/ use an energy profiler that would collect

energy data during the experiment and |
would compare the data from the two

* Choose one energy pattern and do one of the following exercises o
(max. 500 chars):

e a) Explain how the pattern would help in one of your previous
projects. Sticky note in yellow (preferably).

edu.nl/8b639

42

https://tqrg.github.io/energy-patterns/
https://edu.nl/8b639

Checkpoint 3

* Check the Catalog of Energy Patterns for Mobile Apps.
https://tgrg.qgithub.io/energy-patterns/

* Choose one energy pattern and do one of the following exercises
(max. 500 chars):

e a) Explain how the pattern would help in one of your previous
projects. Sticky note in yellow (preferably).

* b) Explain how would you measure the energy-improvement from a
particular pattern. Sticky note in green (preferably).

42

To measure the pattern Dark Color Ul, |
would create two Uls themes for the
same app and | would generate
automated user interaction scripts that
would work for 10 minutes. These scripts
would have to run in the exact same way
throughout multiple executions. | would
use an energy profiler that would collect
energy data during the experiment and |
would compare the data from the two
Uls.

Luis Cruz

edu.nl/8b639

https://tqrg.github.io/energy-patterns/
https://edu.nl/8b639

Checkpoint 3

* Check the Catalog of Energy Patterns for Mobile Apps.
https://tgrg.qgithub.io/energy-patterns/

* Choose one energy pattern and do one of the following exercises
(max. 500 chars):

e a) Explain how the pattern would help in one of your previous
projects. Sticky note in yellow (preferably).

* b) Explain how would you measure the energy-improvement from a
particular pattern. Sticky note in green (preferably).

* Read some of your colleague's answers and upvote your favourite
with the emoji os.

42

To measure the pattern Dark Color Ul, |
would create two Uls themes for the
same app and | would generate
automated user interaction scripts that
would work for 10 minutes. These scripts
would have to run in the exact same way
throughout multiple executions. | would
use an energy profiler that would collect
energy data during the experiment and |
would compare the data from the two
Uls.

Luis Cruz

edu.nl/8b639

https://tqrg.github.io/energy-patterns/
https://edu.nl/8b639

same app and | would generate
automated user interaction scripts that
would work for 10 minutes. These scripts

C
To measure the pattern Dark Color Ul, |
would create two Uls themes for the

* Check the Catalog of Energy Patterns for Mobile Apps. eIl MRS 0 (0 7 B et S e ey
. _ throughout multiple executions. | would
https://tgrg.qithub.io/energy-patterns/ use an energy profiler that would collect

energy data during the experiment and |
would compare the data from the two

* Choose one energy pattern and do one of the following exercises o
(max. 500 chars):

e a) Explain how the pattern would help in one of your previous
projects. Sticky note in yellow (preferably).

* b) Explain how would you measure the energy-improvement from a
particular pattern. Sticky note in green (preferably).

* Read some of your colleague's answers and upvote your favourite
with the emoji os.

* Miro board: https://edu.nl/8b639

edu.nl/8b639

42

https://tqrg.github.io/energy-patterns/
https://edu.nl/8b639

Green Open Flelo

Several research opportunities. Growing niche.

Integrate systems with energy consumption feedback. (Inform users)

Energy—efficiency at different levels. APIl, programming language, IDE, user, developer,
etc.

Impact of different architectures. Controlling for implementation, hardware and feature
set is not trivial.

Domain-specific energy patterns. so far, only mobile.

Green Al, E-waste, Green deFi, Green Mobile Computing...

Many initiatives are emerging to address Sustainable IT: ClimateAction.tech;
#lLetsGreenTheWeb, TheGreenWebFoundation, #11at11, etc.

43

http://ClimateAction.tech
http://www.apple.com/uk
http://thegreenwebfoundation.org
https://www.youtube.com/watch?v=Wa5EP5HWvUw

Assignment

* A) Analyze the change history of the project and find code changes that are
related to green computing. Present and discuss the rationale behind those
changes.

* B) Recommend energy improvements to be implemented in the project
(development, source, infrastructure). Implement them, if possible.

 C) Measure the energy consumption of potential hotspots. (Using an energy
profiler)

Output: Two-page essay with all the rationale behind the study

e (Critical thinking is a big plus. A few things to help: k
e |s it always possible to reduce energy consumption? \g
 \What are the trade-offs of improving energy efficiency?

[/

 \What are the implications on UX or business metrics?

e \Would automation tools help?

 What is missing in the project to improve energy efficiency?

44

Wrap-up

What is Sustainable Software
What is Green Software?
How can we measure energy consumption?

What are the sources of energy consumption in software
engineering”?

What is an energy pattern?

What are the common trade-offs when improving energy
efficiency?

45

%
TUDelft

Architecting for Sustainability

Software Architecture (IN4315)

YW @luismcruz
N4 L.Cruz@tudelft.nl
@% https://luiscruz.github.io/

https://twitter.com/luismcruz
http://luiscruz.github.io
mailto:L.Cruz@tudelft.nl?subject=Green%20Software%20Lecture%20TUDelft

