
TU Delft IN4315:
Software Architecture

Introduction and Labwork

Arie van Deursen

W
iki

pe
di

a,
 D

om
-In

o
Ho

us
e,

 C
or

bu
sie

r

1

IN4315 Software Architecture:
Online lectures rules of engagement
• 100+ participants?!
• Please mute – we may mute you
• Lectures will be recorded and

shared on collegerama
• Switch off your camera (unless

you want to be on collegerama)
• Shipra Sharma (TA)

will help manage
the chat

• Remarks / questions in chat always
welcome!
• Please login with TU Delft credentials

so we know who is chatting
• Please follow TU Delft code of

conduct
• Chats will be saved
• Level of participation may be input to

grade

2

Today’s Kickoff Lecture

1. Welcome

2. What is it that software architects do?

3. What are we going to do together?
• Labwork, coding, writing

• Way of working

• Peer review and grading

4. What is the structure of this course?
• Schedule & deadlines

5. [What is software architecture?]

W
ik

ip
e

d
ia

,
D

o
m

-I
n

o
H

o
u

se
,

C
o

rb
u

si
e

r

3

1. Introduction

2. Quality Attributes

3. Definitions

4. Modeling Software Architecture

5. Modularity and Components

6. Reusability and Interfaces

7. Composability and Connectors

8. Compatibility and Coupling

9. Deployability, Portability and Containers

10. Scalability

11. Availability and Services

12. Flexibility and Microservices

4

What do Software Architects do?

1. What are the key responsibilities of the software architect?

2. What makes a good software architect?

3. Can you name examples of well known, great software architects?

Please enter your thoughts in the chat!

5

Software Architects in Software History

• Margaret Hamilton – Apollo moon lander
• Steve Jobs – Apple
• Erich Gamma – Visual Studio Code
• Adele Goldberg – Smalltalk
• Ken Thomson & Dennis Ritchie – Unix
• Fred Brooks – IBM OS360
• Grace Hopper – Flow-Matic / Cobol
• Ada Lovelace – The first?

For more, see https://computingthehumanexperience.com/people/ 6

https://computingthehumanexperience.com/people/

Key Responsibilities (1)

• Architects carry overall responsibility for all technical decisions

• Lead an organization that takes the right decisions
• Willing and able to take them where needed
• Understand which technical decisions can be safely deferred

7

Consequence (1):
Architect must be Technical Authority

Software Engineering
• Excellent Software Engineering skills

• Promote good development practices

• Solve the hard problems

• Lead technical development team
by example

• Understand impact of decisions

• Defend architectural design decisions

• Plan and manage software releases

Technology
• Know and understand relevant

technology

• Evaluate and influence choice of 3rd
party frameworks, components and
platforms

• Track technology evolution

• Know what you do not know

Ch. 3

“Coding Architect”: Join team, contribute code, program in pair

8

Key Responsibilities (2)

• Architects can explain business impact of technical decisions taken

• Traditionally: Map “problem domain” to “solution domain”
• Modern: Turn technical capabilities into new business opportunities

• Translate technical risk into business risk
• Willing and able to easily switch technical and business perspectives

9

Consequence (2):
Architect must be Great Communicator Ch. 3

10

People to Talk to Ch. 3

11

https://www.youtube.com/watch?v=Zq2VcRZmz78

Gregor Hohpe

12

Shared Story = Product Vision

• Clear vision of what the product is and will do
• Simple, compelling, articulated, shared
• Comes with a credible roadmap towards this vision.
• Expressible in terms that are understandable to end users
• Driven / enabled by sound architectural foundations

• Co-production of product manager and architect

13

Key Responsibilities (3)

• Architects enable (embrace!) change

• Architects are “living in the first derivative”
• Manage change-induced risk
• Anticipate change
• Defer decisions that would block change
• Safeguard successful rate of change
• Optimize processes to accelerate rate of change
• Work with incomplete information

14

Sam Newman: Core Responsibilities
of the “Evolutionary Architect”

• Vision: Ensure there is a clearly communicated technical vision for the
system that will help your system meet the requirements of your
customers and organization
• Empathy: Understand impact of your decisions on end users and team
• Collaboration: Engage with as many people as possible to realize vision
• Adaptability: Adjust vision when needed
• Autonomy: Balance autonomy and overall consistency
• Governance: Ensure system built meets vision

15

Exercises

Reflect on a software development project, or even better an
organization you are familiar with:
1. Who were the architects?
2. How did they fulfill their three key responsibilities?
3. Who were the architects mostly talking to? How many floors did

they span?
4. How explicit was the (technical) vision? What was this vision?
5. What did the project do to optimize the rate of change?
6. What do you see as architectural do’s and don’ts in this project?

16

Further Reading

• Martin Fowler. Who needs an architect? IEEE Software, 2003
https://martinfowler.com/ieeeSoftware/whoNeedsArchitect.pdf
• Gregor Hohpe. The Architect Elevator — Visiting the upper floors.

https://martinfowler.com/articles/architect-elevator.html
• Gregor Hophe. The Software Architect Elevator. O’Reilly, 2020.

Chapters 1-5
• Sam Newman. Building Microservices. O’Reilly, 2015. Chapter 2.
• Cesare Pautasso. Software Architecture. Leanpub, 2020. Chapter 3

https://leanpub.com/software-architecture/

17

https://martinfowler.com/ieeeSoftware/whoNeedsArchitect.pdf
https://martinfowler.com/articles/architect-elevator.html
https://leanpub.com/software-architecture/

IN4315 Labwork

Software architecture is about
• people:

• You will work in teams of four
• real systems:

• You will adopt an open source system,
• which you will analyze, describe, and improve
• and with whose developers you’ll interact

• communication:
• You will write
• You will present

18

Team Formation

• 4 != 3, 4 != 5
• Aim for a diverse team:

• Git knowledge, programming skills, writing, presentation, domain knowledge
• Bachelor background, master track, geography, ...

• Brightspace discussion forum “Partners Wanted”
• Form your group on Brightspace (Collaboration / Groups)
• DEADLINE: Monday February 15, 17:00

19

Team Coach

• One of the teachers
• One per team
• Meetings in week 2, 4, 6 of the course
• Discuss progress
• Ask-them-anything
• Think how to map theory to your system
• Think about interesting aspects of your system to study

Coaches:
Leonhard Applis

Luís Cruz
Arie van Deursen
Xavier Devroey

Burcu Kulahcioglu Ozkan
Diomidis Spinellis

20

System Selection

• A system your team is passionate about
• A system that is sufficiently active:

• Open to external contributions
• At least one accepted pull request per day

• A system that’s not too simple
• A system that may be very complex, but then possibly with

meaningful sub-system to focus on.
• Written in any programming language you master
• Selection must be approved by TAs

Use Brightspace
“Claim your project” forum.

DEADLINE:
Monday February 15, 17:00

21

22

Learn from Open Source Architects:
Offer them a Contribution

• Make a useful contribution to the
system you study

• Offer it to the system’s architects as a
pull request

• They will discuss it with you,
… and hopefully merge it.

Get in touch with the
architects!

Make them read your work

Interview them for your blog?!

23

24ht
tp
s:/

/m
ed

iu
m
.co

m
/@

da
ni
el
.h
el
le
r/
te
n-
pr
in
cip

le
s-
fo
r-g

ro
w
th
-6
90
15
e0
8c
35
b

25https://www.tudelft.nl/teachingacademy/get-inspired/education-fellows

Assignments E1-E4: (Technical) Essay Writing

Each team writes four essays (1500-2000 words):

1. the product vision, including required capabilities, roadmap,
product context, domain model, and stakeholder analysis.

2. architectural decisions made, including system decomposition,
tradeoff points, as well as architectural styles and patterns adopted.

3. quality and evolution; and
4. a deeper analysis based on the lectures or other relevant material

specific to the system of choice;

26

https://se.ewi.tudelft.nl/delftswa/2020/assignment.html
https://se.ewi.tudelft.nl/delftswa/2020/assignment.html

Peer Review

• Learn one project very well – your own
• Learn about other projects by studying other team’s essays

• Each student writes four reviews, one for essays E1-E4 each
• Each group receives feedback in 16 reviews

• Four reviews for each essay E1-E4

• We’ll use peer.ewi.tudelft.nl

27

Public Writing makes Better Writers

• Objective 1: Write for the course
• Objective 2: Write for the world

• Throughout the course, your team can make your work available

• Delft Students on Software Architecture (DESOSA)

28

29

30

The four essays for
Ludwig

31

The first essay for
RIOT

32

DESOSA: Past / Present

Past (pre 2019)
• Book with chapters
• One chapter per team
• Each team own git repo
• Book published after course
• Graded by teachers

• Teams can opt-out
• All documents in markdown

Present (2020, 2021)
• Collection of essays (blogs)
• Four essays per team
• All teams in one shared git repo
• Blogs shared during course
• Peer review

• Teams can opt-out
• All documents in markdown

33

34

Manage your Time!

• Considerable freedom (own initiative) in what you do

• Not everything you do may be visible in essays

• Therefore, you need to explain how you spent your time

• 5 EC = 140 hours; In 8 week course = 17.5 hours per week!

• Per student: short, reflective journal, commit one entry per week

• Track how many hours you spent

• Main activities conducted

• Main output produced

• Summary of key things learned

35

36

All Communication: Mattermost

• Announcements – main channel – essentials only!

• Off-Topic – your random noise
• Questions-{contributions, essays, lectures, tech}

• Team-XYZ (public): Main communication hub for your team
• Accessible to all; others can help / learn
• Use to leave an evidence trail of you work.
• Use to integrate with (learn from / help) other teams
• All communication in English
• DO NOT USE WHATSAPP, EMAIL, TELEGRAM, ... (and not even Signal)
• In person / video call? Post short summary on Mattermost

See registration link on
BrightSpace

37

Personal (Pandemic) Complications

• Make sure you stay safe and healthy
• When all goes well:

• Make your hours, and keep your journal up to date on weekly basis
• In case of serious issues: Always contact EEMCS student counsellor

• We’ll find a solution
• Your up to date journal will be the starting point

• For minor disturbances:
• Use your journal to explain temporary lack of progress
• Indicate in journal how you and your team will handle it

• Feel free to contact TAs or teacher(s) at any time (email, mattermost)

38

Teaching Philosophy: Open Learning

• This course is open by design
• You learn from what others are doing
• You share your work with others

• Work-in-progress writing is visible within course only

• Your interaction with open source systems is public
• You can decide if you want to make your writings public

39

40

The DESOSA 2021 GitLab Repo

• content/projects/<your project name>
• /posts
• /images
• /contributions
• /journals

• You can push branches and merge pull requests
• Merge is team decision: Full team is responsible
• [Only make changes to your folder]

41

Closing Day: April 1, full day

• Each team will prepare 10min (max!) video
• Optionally made public

• Groups of 5-6 teams will join two hour (online) session:
• Watch video (10min) followed by Q&A (10min)
• Learn from each other
• Ask questions and give feedback
• One teacher present

• Lockdown reduced? Drinks on campus!

42

43

44

