
TU Delft IN4315: 
Software Architecture

Lecture 2:
Envisioning the Product

Arie van Deursen

W
iki

pe
di

a,
 D

om
-In

o
Ho

us
e,

 C
or

bu
sie

r

1



2



1. Introduction

2. Quality Attributes

3. Definitions

4. Modeling Software Architecture

5. Modularity and Components

6. Reusability and Interfaces 

7. Composability and Connectors

8. Compatibility and Coupling

9. Deployability, Portability and Containers 

10. Scalability

11. Availability and Services

12. Flexibility and Microservices 

3



Defining Software Architecture

1. How would you define software architecture?
2. How does your definition of software architecture relate to 

what an architect does?
3. Can you name examples of well known systems with great or 

influential architectures?

4

Please enter your thoughts in the chat!



5

Unix, Git, Eclipse, Emacs, LLVM, REST, Selenium, JUnit, ...



The Architecture of a System (IEEE):

• The set of fundamental concepts or properties 

• of the system in its environment, 

• embodied in its elements and relationships, 

• and the principles of its design and evolution.

6



The Architecture of a System (Roy Fielding)

• A configuration of architectural elements
(components, connectors, and data)
• constrained in their relationships
• in order to achieve a desired set of 

architectural properties.

Constraints: Focus on what is and is not allowed

7



Architecture Defined

Architecture represents 
the significant design decisions 

that shape a system
where significant is measured 

by cost of change

(Grady Booch, March 2006)

8Grady Booch, ACM/IEEE/IBM Fellow



Ch. 3



“Principal Design Decisions”

Aspects:
• Structure
• Behavior
• Interaction
• Deployment
• User Interface
• Implementation 

Principal

• Needed to meet (quality) goals of stakeholders

• Shape (likely) future design decisions
• “already taken” to make life easier
• “simplify”: offering guidance on future decisions
• “limit”: In retrospect unwise, but hard to change.

Ch. 3



Descriptive or Prescriptive?

• Prescriptive: 
• Decisions of the future – architecture as it should be
• Idealized version of the past – architecture as it should have been

• Descriptive:
• Decisions of the past – architecture as it is
• Maybe complex due to repeated violations / short cuts
• May have to be “recovered” from actual system (architectural archeology)

• Erosion:
• Undermining of originally prescribed architecture

Ch. 3



Design issue Design alternatives Design decision, with rationale

Ch. 3



Gr
eg

or
 H

oh
pe

. T
he

 a
rc

hi
te

ct
 e

le
va

to
r. 



Modeling Architectural Decisions?

• Static
• Structure 
• Decomposition
• Interfaces
• Components
• Connectors 
• Dependencies

• Dynamic 
• Behavior
• Deployment 

• Styles and Patterns
• Design Process 

• Constraints
• Rationale
• Quality Assurance
• Team Organization 

• Target Audience
• Technical Developers
• Marketing/Customers
• Management 

14

Ch. 3

Grady Booch



Why Software Architecture? 

• Manage complexity through abstraction 
• Communicate, remember and share global design decisions among 

the team 
• Visualize and represent relevant aspects (structure, behavior, 

deployment, ...) of a software system 
• Understand, predict and control how the design impacts quality 

attributes of a system 
• Define a flexible foundation for the maintenance and future evolution 

of the system 

Ch. 1



“Art or Science”?

• The “artistic” part of software architecture is minimal 
• Creativity, Originality and Aesthetics are less valued than Feasibility, 

Viability and Fitness to a purpose. 
• Even the best architects copy solutions, styles and patterns that have 

proven themselves in practice, adapt them to the current context, 
improve upon their weaknesses, and then assemble them in novel 
ways with incremental improvements. 
• An architectural process can be established with intentional artifacts, 

clear activities, and well-defined project management milestones 

16

Ch. 3



“Science or Art”?

• There exists only a modest body of knowledge about software 
architecture 
• Scientific and analytical methods are still lacking - those that do exist 

are hard to apply in practice 
• There is no perfect design: architecture is a wicked problem involving 

subjective tradeoffs and the management of extreme ambiguity and 
contradiction 
• Experience counts: the best architects are grown, not born 

17

Ch. 3



Dialectic Learning in Architecture

1. Just do it: Engage in architectural activities in realistic setting

2. Study / internalize existing theories and approaches

3. Confront the two with each other
• How does this theory really work?

• Does this theory apply to my system? Why? Why not?

Thesis: Theory

Anti-Thesis: Practice

Synthesis: Understanding

18



Essay 1:
Articulating the Product’s 

Vision and Architectural Drivers

19



Software Architecture is about People

• “Maybe half of software development is about nerd stuff 
happening at the whiteboard and about typing at the keyboard.”

• “The other half is about people and relationships. “

• There are few software team activities where this becomes more 
obvious than during architecture formulation. 

20



21

Ch. 3



Mapping Between Problems and Solutions?

• The relationship between problem and solution is rich and complex. 
• You can’t just start with a problem definition and methodically 

elaborate it into a solution 
• The mapping from problems to solutions is many-to-many 
• Multiple seemingly unrelated solutions might be required to solve 

what you perceive as a single problem 
• Some problems seem to defy any mapping at all 

22

Modern: Turn technical capabilities into new business opportunities



Shared Story = Product Vision

• Clear vision of what the product is and will do
• Simple, compelling, articulated, shared
• Comes with a credible roadmap towards this vision.
• Expressible in terms that are understandable to end users
• Driven / enabled by sound architectural foundations

• Co-production of product manager and architect

23



24



25



Recognizing a System’s Stakeholders

• Video / music producers and consumers
• Advertisers
• Regulators (privacy, intellectual property)
• ...

• Marketing and sales
• Management
• Investors
• ...

• Developers
• Operations
• Testers
• Designers
• Architect
• ...

26

(E
nd

) U
se

rs
Bu

sin
es

s De
ve

lo
pm

en
t &

 O
pe

ra
tio

ns



Stakeholders in
Open Source?

• Rich trail of 
communication in issues, 
discussions, reviews, ...

• Sometimes the end users 
are other developers

27



The “Domain Model”

• Refutable truths about the real-
world 
• Outside your control 
• Your system will be evaluated 

against it 
• Architecturally significant 

requirements 

• Problem domain description:
• Information (invariants, 

navigation, snapshots) 

• Functionality (use-case 
scenarios, feature models) 
• Define shared vocabulary and 

understanding towards your 
customer, domain expert 

Ch. 4



Ch. 4





Slide by Mitchell Olsthorn



32
https://quotesondesign.com/eliel-saarinen/



33

Ch. 4



Ch. 4



Ch. 4



Quality Attributes Ch. 1,2

36



Quality Attributes

• Desirable properties of a system (under construction)

• External: fitness for purpose / does it meet stakeholder needs
• Internal: fitness for engineering process / can devs work with it

• Internal attributes indirectly affect many external attributes

• Static: structural  properties of the design / code
• Dynamic: run time properties of the system in action

37

Ch. 2



A Catalogue of “ilities”

• Meta Measurability, auditability
• Functionality Correctness, completeness
• Design Modularity, feasibility
• Operation Usability, performance, scalability
• Failure Recoverability, reliability, availability
• Attack Privacy, confidentiality, integrity
• Change Flexibility, extensibility, configurability
• Long-term Maintainability, explainability

Ch. 2

38



1. Introduction

2. Quality Attributes

3. Definitions

4. Modeling Software Architecture

5. Modularity and Components

6. Reusability and Interfaces 

7. Composability and Connectors

8. Compatibility and Coupling

9. Deployability, Portability and Containers 

10. Scalability

11. Availability and Services

12. Flexibility and Microservices 

39



Managing “ility” tradeoffs

• Privacy vs usability
• Modularity vs  time-to-market
• Availability vs configurability
• Extensibility vs integrity
• Performance vs interoperability
• Performance vs confidentiality
• ...

40

The architect needs to 
understand which 
attributes must be 

optimized, and which 
ones can be sacrificed



ISO Software Quality Characteristics

41



42



Nassim Taleb: Antifragile

Some things benefit from shocks; 
they thrive and grow when exposed to 

volatility, randomness, disorder, and stressors 
and love adventure, risk, and uncertainty. 

Yet, in spite of the ubiquity of the phenomenon, 
there is no word for the exact opposite of fragile. 

Let us call it antifragile. 
Antifragility is beyond resilience or robustness. 
The resilient resists shocks and stays the same; 

the antifragile gets better

43



The Ethical Software Architect

44



Ethics

Well-founded standards of right and wrong 
that prescribe what humans ought to do, 

usually in terms of rights, obligations, benefits to society, 
fairness, or specific virtues.

45

The continuous effort of studying 
our own moral beliefs and our moral conduct, 

and striving to ensure that we, and the institutions we help to shape,
live up to standards that are reasonable and solidly-based

ht
tp

s:
//

w
w

w
.sc

u.
ed

u/
et

hi
cs

/e
th

ic
s-

re
so

ur
ce

s/
et

hi
ca

l-d
ec

isi
on

-m
ak

in
g/

w
ha

t-i
s-

et
hi

cs
/1



46



The Ethical Software Architect?

Ethics of the Product
• “First, do no harm”
• Legal limits
• Fair pricing
• Dual use
• Human dignity
• Human control
• ...

Ethics of the Construction
• Bias in data sets
• Accessibility 
• Resource usage, energy consumption
• Code “reuse”
• Tracking and privacy
• Code of conduct, inclusion
• ...

47



Essay E1: Product Vision

1. Characterization of what the project aims to achieve
2. The key domain concepts (underlying domain model)
3. The system’s main capabilities (e.g. use cases), visible to (end) user
4. The current/future (external) context in which the system operates
5. The stakeholders involved in the project, and what they need from 

the system so that it is beneficial to them
6. The key quality attributes the system must meet
7. A product roadmap for the upcoming years
8. Ethical considerations of the system and its construction process

48


