TU Delft IN4315:
Software Architecture
_ecture 2:
Envisioning the Product

Arie van Deursen

Date Start End Activity Teacher Topic

Wed Feb 10 13:45 15:30 Lecture1 Arie van Deursen Introduction and Course Structure
Fri Feb 12 08:45 10:30 Lecture 2 Arie van Deursen Envisioning the System

Wed Feb 17 13:45 15:30 Lecture 3 Arie van Deursen Realizing the Vision

FriFeb19 08:45 10:30 Lecture 4 Arie van Deursen Continuous Evolution

Wed Feb 24 13:45 15:30 Lecture5 Luis Cruz Architecting for Sustainability

FriFeb 26 08:45 10:30 Lecture 6 Burcu Kulahcioglu Ozkan Architecting for Distribution

Wed Mar 3 13:45 15:30 Lecture 7 Diomidis Spinellis 50 years of Unix Architecture

Fri Mar 5 08:45 10:30 Lecture8 TBD
Wed Mar 10 13:45 15:30 Lecture9 TBD

Fri Mar 12 08:45 10:30 Lecture 10 Xavier Devroey Software Variability Management

Wed Mar 17 13:45 15:30 Lecture11 TBD

FriMar19 08:45 10:30 Lecture 12 Daniel Gebler (Picnic) Architecting for business as unusual

Wed Mar 24 13:45 15:30 Lecture 13 TBD
FriMar 26 08:45 10:30 Lecture 14 Ferd Scheepers (ING) Architecting for the Enterprise

Thu Apr 1 08:45 17:30 Finale All students Final presentations I ,L‘

Introduction SOftware

Quality Attributes
Definitions Archltecture
Modeling Software Architecture
Modularity and Components
Reusability and Interfaces
Composability and Connectors
Compatibility and Coupling

. Deployability, Portability and Containers
10. Scalability

11. Availability and Services

12. Flexibility and Microservices

L 0N UL REWDNRE

Cesare Pautasso

Defining Software Architecture

How would you define software architecture? e

2. How does your definition of software architecture relate to
what an architect does?

3. Can you name examples of well known systems with great or
influential architectures?

Please enter your thoughts in the chat!

' > - we
-

" The Architecture of Open Source ApplicatioT*us

Volume li: Structure, Scale, and a Few More Fearless Hacks

" Beautiful
/ Architecture

(Leading ThinkergiReveal the Hidden Beallty in Software Design

-

Unix, Git, Eclipse, Emacs, LLVM, REST, Selenium, JUnit, ...

» K
1
s,

Edited by Amy Brown & Greg Wilson

A
QREILLY" Edited\DIOmld\E Spinellis & Georgios Gousios

The Architecture of a System (IEEE):

* The set of fundamental concepts or properties
* of the system in its environment,
* embodied in its elements and relationships,

* and the principles of its design and evolution.

The Architecture of a System (Roy Fielding)

* A configuration of architectural elements
(components, connectors, and data)

 constrained in their relationships

* in order to achieve a desired set of
architectural properties.

Constraints: Focus on what is and is not allowed

Architecture Defined

Architecture represents
the significant design decisions
that shape a system
where significant is measured
by cost of change

(Grady Booch, March 2006)

\
\\ . ’1

Grady Booch, ACM/IEEE/IBM Fellow

Software
Architecture

Ch.3

Basic Definition

o A software system’s architecture is the set of
principal design decisions made about the system.

Architecture = {Principal Design Decisions}

|t is the blueprint for a software system’s shared understanding,
necessary for its construction and evolution

‘e 13 J0jAe] "N

“Principal Design Decisions”

Aspects:
* Structure

* Behavior

* Interaction

* Deployment

* User Interface

* Implementation

Principal
* Needed to meet (quality) goals of stakeholders

 Shape (likely) future design decisions
* “already taken” to make life easier
* “simplify”: offering guidance on future decisions
* “limit”: In retrospect unwise, but hard to change.

Descriptive or Prescriptive?

* Prescriptive:
* Decisions of the future — architecture as it should be
* |ldealized version of the past — architecture as it should have been

* Descriptive:
* Decisions of the past — architecture as it is
* Maybe complex due to repeated violations / short cuts
* May have to be “recovered” from actual system (architectural archeology)

* Erosion:
* Undermining of originally prescribed architecture

Decision Making Phases

Diverge : brainstorm/generate many
possible alternatives to solve a given design issue

O
O

\ |/

Converge : prune/prioritize
pick one alternative

Design issue Design alternatives Design decision, with rationale

\

|

- o

\i1, =

RENET

. -~

™~
/~,\\ N\

O~ o

+—

- - Z

¢ > W

\ \ w/
]
\ N
<
X
\\)|
)

\ V4
o — o
\ =
=
. |
: O

"J01eA3|D 129}1YdJe 3y] ‘9dyoH Jo3a49

Software
Architecture

Modeling Architectural Decisions?

* Static * Styles and Patterns
e Structure
* Decomposition
* Interfaces
* Components
Connectors
* Dependencies

* Design Process
* Constraints
* Rationale
* Quality Assurance
* Team Organization

* Target Audience

e Technical Developers
* Marketing/Customers Grady Booch
* Management

* Dynamic
* Behavior
* Deployment

14

Why Software Architecture?

* Manage complexity through abstraction

 Communicate, remember and share global design decisions among
the team

* Visualize and represent relevant aspects (structure, behavior,
deployment, ...) of a software system

* Understand, predict and control how the design impacts quality
attributes of a system

* Define a flexible foundation for the maintenance and future evolution
of the system

“Art or Science”?

* The “artistic” part of software architecture is minimal

* Creativity, Originality and Aesthetics are less valued than Feasibility,
Viability and Fitness to a purpose.

* Even the best architects copy solutions, styles and patterns that have
proven themselves in practice, adapt them to the current context,
improve upon their weaknesses, and then assemble them in novel

ways with incremental improvements.

* An architectural process can be established with intentional artifacts,
clear activities, and well-defined project management milestones

“Science or Art”?

* There exists only a modest body of knowledge about software
architecture

* Scientific and analytical methods are still lacking - those that do exist
are hard to apply in practice

* There is no perfect design: architecture is a wicked problem involving
subjective tradeoffs and the management of extreme ambiguity and
contradiction

* Experience counts: the best architects are grown, not born

Dialectic Learning in Architecture

1. Just doit: Engage in architectural activities in realistic setting

2. Study / internalize existing theories and approaches

3. Confront the two with each other

* How does this theory really work?
* Does this theory apply to my system? Why? Why not?

4)
Thesis: Theory
Anti-Thesis: Practice
Synthesis: Understanding

- J

Essay 1.
Articulating the Product’s
Vision and Architectural Drivers

Software Architecture is about People

* “Maybe half of software development is about nerd stuff
happening at the whiteboard and about typing at the keyboard.”

* “The other half is about people and relationships. “

* There are few software team activities where this becomes more
obvious than during architecture formulation.

20

Problem Space

Solution Space

-

Problem
Definition

Functional
Requirements

Extra-Functional

\Requirements J \

€ -

Data Models

Code

Acceptance Tests

/

21

Lean
Architecture

Mapping Between Problems and Solutions?

* The relationship between problem and solution is rich and complex.

* You can’t just start with a problem definition and methodically
elaborate it into a solution

* The mapping from problems to solutions is many-to-many

* Multiple seemingly unrelated solutions might be required to solve
what you perceive as a single problem

* Some problems seem to defy any mapping at all

Modern: Turn technical capabilities into new business opportunities

22

Shared Story = Product Vision

* Clear vision of what the product is and will do

* Simple, compelling, articulated, shared

* Comes with a credible roadmap towards this vision.

* Expressible in terms that are understandable to end users
* Driven / enabled by sound architectural foundations

* Co-production of product manager and architect

Our Mission

-is the leading destination for creativity—by giving a million creative artists the

short-form mobile video. Our

mission is to inspire creativity and

bring joy.

Our mission is to unlock the potential of human

opportunity to live off their art and billions of fans
the opportunity to enjoy and be inspired by it.

About

- is an open source driver

assistance system.- performs
the functions of Automated Lane
Centering and Adaptive Cruise Control
for over 85 supported car makes and
models.

Long before we knew that it would be called-we knew what we
wanted it to be. Instead of teaching the rest of the world
cryptography, we wanted to see if we could develop cryptography
that worked for the rest of the world. At the time, the industry
consensus was largely that encryption and cryptography would
remain unusable, but we startechwith the idea that private

communication could be simple.
24

@ For the Record

Our Mission

Our mission is to unlock the potential of human
creativity—by giving a million creative artists the
opportunity to live off their art and billions of fans
the opportunity to enjoy and be inspired by it.

TikTok is the leading destination for
short-form mobile video. Our
mission is to inspire creativity and

bring joy.
Signal Foundation
moxieO on 21 Feb 2018
About
openpilot is an open source driver Long before we knew that it would be called Signal, we knew what we
assistance system. openpilot performs | | \wanted it to be. Instead of teaching the rest of the world

the functions of Automated Lane
Centering and Adaptive Cruise Control
for over 85 supported car makes and
models.

cryptography, we wanted to see if we could develop cryptography
that worked for the rest of the world. At the time, the industry
consensus was largely that encryption and cryptography would
remain unusable, but we started Signal with the idea that private

communication could be simple.

25

(End) Users

|

Business

|

Recognizing a System’s Stakeholders

* Video / music producers and consumers

* Advertisers
* Regulators (privacy, intellectual property)

* Marketing and sales
* Management
* Investors

[Development & Operations 1

* Developers
* Operations
* Testers

* Designers
* Architect

Stakeholders in
Open Source?

* Rich trail of
communication in issues,
discussions, reviews, ...

e Sometimes the end users
are other developers

89 marcphilipp commented 7mc

| tried to take a step back and think in terms of who wants to use JUnit and in which way. Here are my thoughts. Plez
free to correct me or ask questions if anything is not clear.

We have (at least) the following existing use cases:

+ Maven users with jar dependencies to JUnit.
o From 4.11 on there will only be junit:junit which does not include Hamcrest but declares a dependency to i
o The old junit:junit-dep simply points to junit:junit.
+ Non-Maven users who simply want to download an all in one jar.
o That's what junit.jar is for.
+ Non-Maven Java users that want to use a different (newer) version of Hamcrest with JUnit.
o They can download junit-dep.jar and use their custom Hamcrest JAR.

Adding support for OSGi will not replace any of these use cases but rather add new ones:

1. Apache Felix Maven Users want a bundle artifact version of JUnit.
> Open Question: Can this be the same Maven artifact?
2. Non-Maven OSGi users want to use an all-in-one OSGi bundle version of JUnit.
> Here, we could package Hamcrest into the same JAR.
3. Non-Maven OSGi users want to do it right and use an OSGi-like bundle that declares a dependency to a Hamci
package that comes from some other (unspecified) bundle.

We should definitely think about which ones of these we need to support.

Thinking about solutions:

e 2 and 3 could be solved by shipping OSGi manifests in junit.jar and junit-dep.jar . They do not re

Maven build, we could simply write the manifest ourselves or use the Ant bnd plugin to do it. Regular JUnit user
not be affected by the modified manifest.

« For 1 itwould make sense to have a Maven build process like the one @Tibor17 has sketched in #472. Here

have to make sure that we will not affect regular Maven users. 27

The “Domain Model”

e Refutable truths about the real-
world

* Qutside your control

* Your system will be evaluated
against it

 Architecturally significant
requirements

* Problem domain description:
* Information (invariants,
navigation, snapshots)

* Functionality (use-case
scenarios, feature models)

* Define shared vocabulary and
understanding towards your
customer, domain expert

Example Domain Model

* Music songs are organized in albums

 The same song can be authored by many artists

Listening to each song costs 0.99 CHF, but short samples can be
heard for free

e Songs can be downloaded and also live streamed

Songs are stored in files of standard MP3 format

Yet the most significant complexity of many applications is not technical. It is in the do-
main itself, the activity or business of the user. When this domain complexity is not
handled in the design, it won’t matter that the infrastructural technology is well con-
ceived. A successful design must systematically deal with this central aspect of the

software.

Foreword by Martin Fowler

DDD

The ubiquitous language:

To know what a spade is; how to use it;

what it does ... ask someone who
The

knows. Business S Technical
Ubiquitous Jargon

Language

Jargon

Each class, each method, each variable
should be carefully named so that the
story they tell is the business story
you’re writing.

n Slide by Mitchell Olsthorn

Always design a thing by
considering it in its next larger
context — a chair in a room, a room
in a house, a house in an
environment, an environment in a
city plan.

— ELIEL SAARINEN

https://quotesondesign.com/eliel-saarinen/

32

System Context View

- ~
g T <
Scope of the
% //// System Interface Design Model
Actor \ /
G
/
N 7~
\ I S
Existing Existing
System System

* Distinguish what needs to be built from what already exists and
define the dependencies and the integration points

Software
Architecture

Ch. 4

System Context View

e User roles, personas - who do you expect will use the system?
Are the users all the same? How many users can share the
system at the same time?

« Dependencies - which external systems need to be integrated
with the system? are there some open API that let other
(unknown or known) systems interact with the system?

Software
Architecture

System Context View Example

Ch. 4

provide (1 Arfists

content forL ‘ l

charge|customers

listen
with

Payment
System

Quality Attributes

Cost Functionality Compatibility

Elasticity \ Time to Market
Fase of support§

/ Reliability /Availability
Testability ~—

Usability

Performance //
Resilience/Maintainability

Scalability
Reusability *

Quality Attributes

 Desirable properties of a system (under construction)

 External: fitness for purpose / does it meet stakeholder needs

* Internal: fitness for engineering process / can devs work with it
* Internal attributes indirectly affect many external attributes

e Static: structural properties of the design / code
* Dynamic: run time properties of the system in action

Software
Architecture

A Catalogue of “ilities” h2

* Meta

* Functionality
* Design

* Operation

* Failure
 Attack

* Change

* Long-term

Measurability, auditability
Correctness, completeness
Modularity, feasibility

Usability, performance, scalability
Recoverability, reliability, availability
Privacy, confidentiality, integrity
Flexibility, extensibility, configurability
Maintainability, explainability

Stakeholders
Internal External

Functionality

Correctness
Completeness
Compliance
Ethics
Feasibility
Design
Modularity
Reusability
Composability
Operation
Performance
. Scalability
Dependabilit;
Failure ,:‘.)7.,‘, Y
Recoverability
Reliabilit
Availability
Security
Attack
Privacy
Flexibility
Change
Compatibility
Portability Interoper
Ease of Integration
Evolvability
1bility bility
Long-term

: Sustain§§'|fity ‘

Introduction SOftware

Quality Attributes
Definitions Archltecture
Modeling Software Architecture
Modularity and Components
Reusability and Interfaces
Composability and Connectors
Compatibility and Coupling

. Deployability, Portability and Containers
10. Scalability

11. Availability and Services

12. Flexibility and Microservices

L 0N UL REWDNRE

Managing “ility” tradeofts

* Privacy vs usability

* Modularity vs time-to-market
* Availability vs configurability

* Extensibility vs integrity

* Performance vs interoperability
* Performance vs confidentiality

The architect needs to
understand which
attributes must be

optimized, and which

ones can be sacrificed

ISO Software Quality Characteristics

Functional Suitability N'fomlame Efficiency Compatibility
Usability ISO 25010 Reliability |
N
Security Maintainability Portability |

Robust

= Traditional IT

= Failure prevention

= Planning & Verification
= Infrastructure based

ArchitectElevator.com

= Distributed Application
= Failure recovery

* Redundancy & Autom.
= Application-based

= Self-healing System
= Always failing

= Design for Failure

= System-based

42

Nassim Taleb: Antifragile | .

Taleb

Author of The Black Swan

Some things benefit from shocks;
they thrive and grow when exposed to

volatility, randomness, disorder, and stressors _ >
and love adventure, risk, and uncertainty. TOUG “ T/Mtf DON TLAgT
Yet, in spite of the ubiquity of the phenomenon, TOUG H PEOPLE DO
there is no word for the exact opposite of fragile.

Let us call it antifragile.
Antifragility is beyond resilience or robustness.
The resilient resists shocks and stays the same;

Antifragile

]] Things That Gain
the antifragile gets better From Disorder

‘The ultimate model to aspire to’
The Times

43

The Ethical Software Architect

« "& GradyBooch & v
i)/ ©@Grady_Booch

Every line of code has a moral and ethical implication.

44

Ethics

Well-founded standards of right and wrong
that prescribe what humans ought to do,

usually in terms of rights, obligations, benefits to society,
fairness, or specific virtues.

The continuous effort of studying
our own moral beliefs and our moral conduct,
and striving to ensure that we, and the institutions we help to shape,
live up to standards that are reasonable and solidly-based

https://www.scu.edu/ethics/ethics-resources/ethical-decision-making/what-is-ethics/

acm.org

ACM Code of Ethics and Professional Conduct

Preamble

Computing professionals' actions change the world. To act responsibly, they
should reflect upon the wider impacts of their work, consistently supporting
the public good. The ACM Code of Ethics and Professional Conduct ("the
Code") expresses the conscience of the profession.

The Code is designed to inspire and guide the ethical conduct of all computing |
professionals, including current and aspiring practitioners, instructors,
students, influencers, and anyone who uses computing technology in an)

impactful way. Additionally, the Code serves as a basis for remediation when

violations occur. The Code includes principles formulated as statements of h
responsibility, based on the understanding that the public good is always the

primary consideration. Each principle is supplemented by guidelines, which

provide explanations to assist computing professionals in understanding and
applying the principle.

Section 1 outlines fundamental ethical principles that form the basis for the
remainder of the Code. Section 2 addresses additional, more specific
considerations of professional responsibility. Section 3 guides individuals who
have a leadership role, whether in the workplace or in a volunteer professional
capacity. Commitment to ethical conduct is required of every ACM member,
and principles involving compliance with the Code are given in Section 4.

© IN @ w 9D

On This Page

Preamble

1. GENERAL ETHICAL
PRINCIPLES.

1.1 Contribute to society
and to human well-being,
acknowledging that all
people are stakeholders in
computing.

1.2 Avoid harm.

1.3 Be honest and
trustworthy.

1.4 Be fair and take action
not to discriminate.

1.5 Respect the work
required to produce new
ideas, inventions, creative
works, and computing
artifacts.

1.6 Respect privacy.

The Ethical Software Architect?

Ethics of the Product Ethics of the Construction

* “First, do no harm” * Bias in data sets

* Legal limits Accessibility

* Fair pricing * Resource usage, energy consumption
* Dual use * Code “reuse”

* Human dignity * Tracking and privacy

* Human control e Code of conduct, inclusion

Essay E1: Product Vision

Characterization of what the project aims to achieve

The key domain concepts (underlying domain model)

The system’s main capabilities (e.g. use cases), visible to (end) user
The current/future (external) context in which the system operates

The stakeholders involved in the project, and what they need from
the system so that it is beneficial to them

Al A

o

The key quality attributes the system must meet
7. A product roadmap for the upcoming years
8. Ethical considerations of the system and its construction process

