
1



Labwork Q&A (1)

• It is OK to use collaborative editors like overleaf / Google docs
• Push markdown often and early
• Use journal to explain who did what

• Being a “guest” in mattermost channels of other teams?
• Make yourself known and explain why you are present
• If you wish to learn from other team, ask, and explain what you learned
• Helping is great (but help should be appreciated)
• As team, it is ok to ask @all in your channel about their intended role



Labwork Q&A (2)

• Main branch is called `main`, not `master`.
• You can work on branches and push them
• Choose branch names that are local to your team (prefix with system, e.g.)
• You can merge into `main`, via a merge request



Learning from the Architects:
Contributing to Open Source 

Arie van Deursen
Delft University of Technology

Im
ag

e 
cr

ed
it:

 A
tla

ss
ia

n



The Open Source Architect

• Overall technical decision maker
• Keeper of the vision in times of change: 

• What comes in, what goes out
• Design integrity

• Design principles guiding changes to code
• Quality trade-offs
• Evolution of underlying principles

• Quality assurance: guidelines + control
• Stakeholder management: 

• Listen to the community, prioritize



Learning from Contributing

• Create a meaningful contribution, and request it to be merged (“pulled”)
• Use this to try to understand the full decision making process

• Feel the “hands of the architects”:
• Trade-offs, prioritization, coding practices, quality control, culture, interaction

• Receive feedback on your own code and way of working
• Explicit (in comments) or implicit (just a merge / reject)



The Many Shapes of Open Source Contributions

• Documentation

• Internationalization

• Report an issue 

• Add some tests (e.g. reproducing a bug)

• Fix a reported bug (with test case)

• Add requested feature (with test case)

• Propose feature (in issue) and build it

• Remove unused or redundant code

• ...

START SIMPLE!

The more interaction with other 

developers are needed, the more 

you’ll learn about the architecture, 

and how it guides the decision 

making process



Getting it Accepted

• Study CONTRIBUTING.md
• Study earlier accepted / rejected 

pull requests
• Start with simple / starter issues
• Keep it small and simple
• Be clear, concise, and polite
• Know your tools (git, build, ...)



CLA: The Contributor
License Agreement
• Individual license:

• You contributed in your own time
• You own your code
• You can give it away
• Case for TU Delft students

• Corparate license:
• You contributed while being paid 

by a company
• Company owns your code
• Company can give it away
• Case for TU Delft employees



What to Avoid (I)

• One Pull Request doing more than one thing
• PR not addressing an issue (open issue first)
• PR making many small stylistic (subjective) changes

• Usually these are unpopular (if it ain’t broke don’t fix it)
• First open issue explaining why you think specific technical debt must be 

fixed; then offer yourself as volunteer.
• Code not following coding standards / culture (layout, tests, ...)
• Code breaking the automated build



What to Avoid (II)

• Not responding to comments from integrators

• Asking questions without trying to figure them out yourself
• Better: I searched in A,B,C, but could not find answer to X,Y,Z

• Messy commits in your feature branch
• Merges from main (master) back into feature branch
• Unclear commit messages
• PR on too old main commit 

(rebase feature branch to most recent main commit before creating PR)



Seven Rules of a Great Commit Message

1. Limit first (subject) line to 50 characters
2. Use the imperative mood in subject line
3. Capitalize the subject line
4. Separate subject line from body by new line
5. Do not end subject line with period

6. Wrap the body at 72 characters
7. Use the body to explain rationale



Contribution done: 
Reflection Time!

• Your own activities: 
• What could you have done better?
• Who did you interact with? 
• What did you learn?

• The project’s processes and architecture:
• Did the processes in place help the project achieve its objectives efficiently?
• Was there friction? What could be improved?
• Who would you need to convince to make this happen?

Im
ag

e 
cr

ed
it:

 w
ik

ip
ed

ia







Further Resources

• How to Contribute to Open Source
https://opensource.guide/how-to-contribute/

• The Beginner’s Guide to Open Source
https://blog.newrelic.com/tag/open-source-best-practices

• How to Write a Git Commit Message
https://chris.beams.io/posts/git-commit/

https://opensource.guide/how-to-contribute/
https://blog.newrelic.com/tag/open-source-best-practices
https://chris.beams.io/posts/git-commit/


ORIGIN

me/junit5
fork

UPSTREAM

junit-team/junit5

local

clone

add remote feature 

branch

push

feature 

branch

pull request: code review, discussion, changes

feature 

branch
merge 

commit

fetch



Software Architecture:
Views and Models

Arie van Deursen

18

W
iki

pe
di

a,
 D

om
-In

o
Ho

us
e,

 C
or

bu
sie

r



Capturing the Architecture

• Every system has an architecture 
• Some architectures are manifest and visible, many others are not 

• A system's architecture may be visualized and represented using 
models that are somehow related to the code
• An architectural model is an artifact that captures a selection of key 

design decisions 
• Architectural modeling is the reification and documentation of those 

design decisions. 

Ch. 4

19



Ch. 4

20



Ch. 4

21



Question First, Model Second

• Different models have different purposes 

• Know what questions you want the model to answer 

before you build it 

George Box: All models are wrong, but some are useful 

Ch. 4

Shneiderman’s (visualization) mantra: 

Overview first, zoom and filter, details on demand

http://www.codingthearchitecture.com/2015/01/08/shneidermans_mantra.html

22



The “Domain Model”

• Refutable truths about the real-
world 
• Outside your control 
• Your system will be evaluated 

against it 
• Architecturally significant 

requirements 

• Problem domain description:
• Information (invariants, 

navigation, snapshots) 

• Functionality (use-case 
scenarios, feature models) 
• Define shared vocabulary and 

understanding towards your 
customer, domain expert 

Ch. 4

23



24

Ch. 4



Ch. 4

25



26

Views on 
Kessel 
Castle
Keverberg



27

The legacy view 1944

1850

1400
(motte)



28

Modeling the
Foundations



29

A view on the roof



30

A view 
on the 
floors

Design pattern 
from Le Corbusier



31

A view 
on the 
air flow



32

The Room Configuration View



33

A view 
on the 
context



34

Views on 
Kessel 
Castle
Keverberg

Reconstruction 2015



Ch. 4

35



36



Containers View
• What are the main logical 

execution environments in 
which the system can run? 

• Containers can be deployed 
separately and independently 
evolved

• Container: architectural 
abstraction (beyond Docker)

Examples:
• Server-side Web application 
• Client-side Web application 
• Client-side desktop application 
• Mobile app 
• Server-side console application 
• Shell script 
• Microservice 
• Data store

Ch. 4Ch. 4

37



Ch. 4

38



Components View

• What is the structural decomposition of the software with related 
functionality encapsulated behind a well-defined interface? 
• What are the dependencies between components? 
• Are there shared components that will be deployed in multiple 

containers? 
• What is the technology used to build the components? 

(programming languages, framework decisions) 

Ch. 4

39



Ch. 4

40



https://c4model.com/
41



42



43



44

ht
tp
:/
/w

w
w
.c
od

in
gt
he

ar
ch
ite

ct
ur
e.
co
m
/2
01

5/
01

/0
8/
sh
ne

id
er
m
an

s_
m
an

tr
a.
ht
m
l



Ch. 4

45



46

Can you think of a 
(different) type of 

connector for each line 
between two 
components?

Ch. 4



Connectors 
View 
Example

47

Ch. 4



Philippe Kruchten’s “4+1 Views”

48

IE
EE

 So
ftw

ar
e,

 N
ov

em
be

r 1
99

5



Kruchten’s “Logical View”

• Similar to C4 component view

• Decompose the system structure into 
software components and connectors 

• Map functionality/requirements/use cases onto the components 

• Concern: Functionality 
• Target Audience: Developers and Users 

49

Ch. 4



www.plantuml.com
50

Ch. 4



Kruchten’s “Process View”

• Model the dynamic aspects of the architecture:
• Which are the active components?
• Are there concurrent threads of control?
• Are there multiple distributed processes in the system?
• What is the behavior of (parts of) the system? 

• Describe how processes/threads communicate 
(e.g., remote procedure call, messaging connectors) 
• Concern: Functionality, Performance
• Target Audience: Developers 

51

Ch. 4



www.plantuml.com
52

Ch. 4



Kruchten’s “Development View”

• Static organization of the software code artifacts 
(packages, modules, binaries...) 
• Map logical view onto code
• Describe code review, contribution, and build process

• Concern: Reuse, Portability, Build 
• Target Audience: Developers 

53

First line of thinking for 
“us, developers”

Ch. 4



ht
tp
s:/

/w
w
w.
bl
en
de
r.o
rg
/b
f/c

od
el
ay
ou

t.j
pg

54



55



56



57



Kruchten’s “Physical View”

• Define the hardware environment (hosts, networks, storage, etc.) 
where the software will be deployed 
• Different hardware configurations for providing different qualities 
• Deployment View: Mapping between logical and physical entities
• Virtual is the new physical

• Amazon’s “AWS Well-Architected Framework” 

• Concern: Performance, Scalability, Availability, Reliability, Security 
• Target Audience: Operations 

58

Ch. 4



4+1: Connecting 
Kruchten’s
Views with Use Cases
• Views should not contradict 

each other
• Use cases can be “executed”

in each view

59

Ch. 4



Rozanski & Woods Viewpoint Taxonomy

60



“SEI DSA” Taxonomy
“View types”:
• Module
• Component & Connector
• Allocation

Component & connectors:
• Pipe and filter, shared data, 

publish subscribe, client-server, 
p2p, …

61



arc42.org: A Template for Architecture 
Communication and Documentation

1. Introduction and Goals

2. Constraints

3. Context and Scope

62



The arc42.org Template for 
Architecture Communication and Documentation

4. Solution strategy

5. Building block view

6. Run time view

7. Deployment view

8. Crosscutting concepts

9. Architectural decisions

63



The arc42.org Template for 
Architecture Communication and Documentation

10. Quality Requirements

11. Risks and Technical Debt

64



Essay 2: The System’s Architecture

65



Software Architecture:
Modularization and

Interface Design

Arie van Deursen

W
iki

pe
di

a,
 D

om
-In

o
Ho

us
e,

 C
or

bu
sie

r

66



Ch. 5

67



Sorts of Components

Infrastructure
• Address needs of multiple 

application domains
• Highly reusable
• Customizable
• Support non-functionals

Application-specific
• Directly implement main 

functionality
• Domain knowledge intensive
• Less suitable for reuse

Ch. 5

68



Ch. 5

69



Ch. 5

70



Ch. 6

71



Application Programming Interfaces

• APIs are not found in all 
architectures:
• APIs can be found in 

architectures that are 
designed to be 
• open and stable platforms
• supporting externally 

developed components and 
applications. 

Ch. 6

72



Essay 2: The System’s Architecture

73


