Date

Wed Feb 10
Fri Feb 12
Wed Feb 17
Fri Feb 19
Wed Feb 24
Fri Feb 26
Wed Mar 3
Fri Mar 5
Wed Mar 10
Fri Mar 12
Wed Mar 17
Fri Mar 19
Wed Mar 24
Fri Mar 26

Thu Apr 1

Start

13:45

08:45

13:45

08:45

13:45

08:45

13:45

08:45

13:45

08:45

13:45

08:45

13:45

08:45

08:45

End

15:30

10:30

15:30

10:30

15:30

10:30

15:30

10:30

15:30

10:30

15:30

10:30

15:30

10:30

17:30

Activity

Lecture 1

Lecture 2 Arie van Deursen

Lecture 3

Lecture 4

Lecture 5

Lecture 6

Lecture 7

Lecture 8

Lecture 9

Lecture 10

Lecture 1

Lecture 12

Lecture 13

Lecture 14

Finale

Teacher

Arie van Deursen

Arie van Deursen

Arie van Deursen

Luis Cruz

Burcu Kulahcioglu Ozkan
Diomidis Spinellis

Bert Wolters (Adyen)
Steffan Norberhuis

Xavier Devroey

TBD

Daniel Gebler (Picnic)

TBD

Ferd Scheepers (ING)

All students

Topic

Introduction and Course Structure (slides)
Envisioning the System (slides)

Realizing the Vision

Continuous Evolution

Architecting for Sustainability
Architecting for Distribution

50 years of Unix Architecture
Architecting for Scalability

Architecting for Operations

Architecting for Variability

Architecting for business as unusual

Architecting for the Enterprise

Final presentations

Labwork Q&A (1)

* |t is OK to use collaborative editors like overleaf / Google docs
e Push markdown often and early
* Use journal to explain who did what

* Being a “guest” in mattermost channels of other teams?
* Make yourself known and explain why you are present
* If you wish to learn from other team, ask, and explain what you learned
* Helping is great (but help should be appreciated)
* As team, it is ok to ask @all in your channel about their intended role

Labwork Q&A (2)

* Main branch is called ‘main’, not ‘master".
* You can work on branches and push them
* Choose branch names that are local to your team (prefix with system, e.g.)
* You can merge into ‘main’, via a merge request

Learning from the Architects:
Contributing to Open Source

Arie van Deursen
Delft University of Technology @

eeeeeeeeeeeeeeeeeeeeeee

The Open Source Architect

* Overall technical decision maker

* Keeper of the vision in times of change:
* What comes in, what goes out

* Design integrity
* Design principles guiding changes to code
* Quality trade-offs
* Evolution of underlying principles

* Quality assurance: guidelines + control

 Stakeholder management:
* Listen to the community, prioritize

Learning from Contributing

* Create a meaningful contribution, and request it to be merged (“pulled”)
» Use this to try to understand the full decision making process

* Feel the “hands of the architects”:
* Trade-offs, prioritization, coding practices, quality control, culture, interaction

* Receive feedback on your own code and way of working
 Explicit (in comments) or implicit (just a merge / reject)

The Many Shapes of Open Source Contributions

* Documentation
. . . START SIMPLE!

* Internationalization

* Report an issue

» Add some tests (e.g. reproducing a bug)

* Fix d reported bUg (W|th test case) The more interaction with other

developers are needed, the more
you’ll learn about the architecture,
and how it guides the decision
making process

» Add requested feature (with test case)
* Propose feature (in issue) and build it

e Remove unused or redundant code

Getting it Accepted

Study CONTRIBUTING.md

Study earlier accepted / rejected
pull requests

Start with simple / starter issues

Keep it small and simple

Be clear, concise, and polite

Know your tools (git, build, ...)

C @ github.com/atom/atom/blob/master/CONTRIBUTING.md w O 0O M e

Contributing to Atom

$ \ First off, thanks for taking the time to contribute! }q: 4

The following is a set of guidelines for contributing to Atom and its packages, which are
hosted in the Atom Organization on GitHub. These are mostly guidelines, not rules. Use
your best judgment, and feel free to propose changes to this document in a pull request.

Table Of Contents

Code of Conduct

| don't want to read this whole thing, | just have a question!!!
What should | know before | get started?

e Atom and Packages

e Atom Design Decisions
How Can | Contribute?

¢ Reporting Bugs
¢ Suggesting Enhancements
¢ Your First Code Contribution

¢ Pull Requests
Styleguides

¢ Git Commit Messages

CLA: The Contributor
License Agreement

* Individual license:
* You contributed in your own time

* You own your code
* You can give it away
* Case for TU Delft students

° Corparate license:
* You contributed while being paid
by a company
 Company owns your code
* Company can give it away
e Case for TU Delft employees

& C @& apache.org/licenses/contributor-agreements.html w © O N e :

APACHE

SOFTWARE FOUNDATION
20TH ANNIVERSARY

COMMUNITY-LED DEVELOPMENT "THE APACHE WAY"

ASF CONTRIBUTOR AGREEMENTS

The Apache Software Foundation uses various agreements to accept regular contributions from
individuals and corporations, and to accept larger grants of existing software products.

These agreements help us achieve our goal of providing reliable and long-lived software products
through collaborative open source software development. In all cases, contributors retain full
rights to use their original contributions for any other purpose outside of Apache while providing
the ASF and its projects the right to distribute and build upon their work within Apache.

CONTRIBUTOR LICENSE AGREEMENTS

e |CLA: Individual Contributor License Agreement
e CCLA: Corporate Contributor License Agreement

What to Avoid (l)

* One Pull Request doing more than one thing
* PR not addressing an issue (open issue first)

* PR making many small stylistic (subjective) changes
e Usually these are unpopular (if it ain’t broke don’t fix it)

 First open issue explaining why you think specific technical debt must be
fixed; then offer yourself as volunteer.

* Code not following coding standards / culture (layout, tests, ...)
* Code breaking the automated build

What to Avoid (I1)

* Not responding to comments from integrators

* Asking questions without trying to figure them out yourself
* Better: | searched in A,B,C, but could not find answer to X,Y,Z

* Messy commits in your feature branch
* Merges from main (master) back into feature branch
e Unclear commit messages

* PR on too old main commit
(rebase feature branch to most recent main commit before creating PR)

Seven Rules of a Great Commit Message

$ git log --oneline -5 --author pwebb --before "Sat Aug 30 2014"

5ba3db6 Fix failing CompositePropertySourceTests
84564a0 Rework @PropertySource early parsing logic
el42fdl Add tests for ImportSelector meta-data
887815f Update docbook dependency and generate epub
ac8326d Polish mockito usage

Limit first (subject) line to 50 characters

Use the imperative mood in subject line
Capitalize the subject line

Separate subject line from body by new line
Do not end subject line with period

Lk wheE

)]

. Wrap the body at 72 characters
. Use the body to explain rationale

~N

Contribution done:
Reflection Time!

* Your own activities:

* What could you have done better?
* Who did you interact with?
* What did you learn?

* The project’s processes and architecture:
* Did the processes in place help the project achieve its objectives efficiently?
e Was there friction? What could be improved?
* Who would you need to convince to make this happen?

Image credit: wikipedia

C @& desosa.nl/projects/openrct2/ Qa % O D * e
CONTRIBUTIONS

Fix #10662: Fixed font issue on Feature: Add console command Docs: Add missing directories Fix #10993: Guest Count Intent
create/remove ducks tooltip for removing all floating objects in readme.md Not Listened To
OpenRCT2/0OpenRCT2 OpenRCT2/0OpenRCT2 OpenRCT2/0OpenRCT2 OpenRCT2/0OpenRCT2

Fixed the following bug in the Added the following feature Added entries and descriptions Fixes guest count not being
cheat menu of OpenRCT2. The requested in an earlier issue for missing directories in the redrawn in toolbar on guest leave.
'create ducks' and 'remove ducks' (#10637): Added the console ‘src/openrct2/’ readme.md file.

buttons were using an incorrect command

font in the tooltip (on mouseover). ‘remove_floating_objects ", which

Besides fixing this font, we made removes all balloon sprites,

the text shown in the tooltips money effects and flying ducks

more informative. shown on screen. It returns how

many objects were removed.

[MERGED] OPEN PR (/] OPEN PR (7] OPEN PR (7] OPEN PR (7]
Feature: Simple implementation Fix #11005: Company value Scenery window scrolling issue [WIP] Filter track designs by
of copy input to clipboard overflows OpenRCT2/OpenRCT2 available scenery/vehicles
(Ctrl+C) OpenRCT2/0OpenRCT2 A bug with the scenery window OpenRCT2/0OpenRCT2
OpenRCT2/0penRCT2 In issue #11005, the company was reported in issue #10675. An attempt to implement the
Added the ability to copy text to value overflows when the park When switching to another tab, feature that was requested in
clipboard: Ctrl+C now copies text cash is equal to INT_MAX, a ride is the tab would sometimes show an #10675, by adding a checkbox to
of input dialog to clipboard. built and opened. This is fixed by empty screen. This was fixed by the track list which allows the
clamping the company value exchanging an old hack for a player to filter the designs based
between INT_MIN and INT_MAX. update_scroll call on the availability of scenery and
vehicles.

@ desosa.nl/projects/gitlab/ a % OO

Group repository Add documentation Give better feedback
contributors by email about the life cycle of a for unavailable quick
instead of name HTTP git request actions
gitlab-org/gitlab gitlab-org/gitlab gitlab-org/gitlab
A frontend issue where During research for our Issue where applying
the graphs showing second article, we found quick actions in
community contributions a gap in the architectural issues/merge requests
was split when a user documentation about the (e.g. typing /close) that
changes their git name. life cycle of an HTTP git are not available didn't
The solution was to request. We've added give the user feedback.
group by git email. the conclusions of our Now gives feedback with
research concisely to the ‘failed to apply
documentation. commands'.

Inform new Remove outdated
contributors that fork installation methods
should be public and separate the cloud
gitlab-com/www-gitlab-com providers on the

While merging another installation page

merge request, it gitlab-com/www-gitlab-com

appeared that a fork During research for the
must be made public fourth article we've
before the pipeline is found out that the
visible. This was missing installation page is

in the documentation outdated and not all
until this merge request cloud providers are
was merged. listed.

Further Resources

* How to Contribute to Open Source
https://opensource.guide/how-to-contribute/

* The Beginner’s Guide to Open Source
https://blog.newrelic.com/tag/open-source-best-practices

* How to Write a Git Commit Message
https://chris.beams.io/posts/git-commit/

https://opensource.guide/how-to-contribute/
https://blog.newrelic.com/tag/open-source-best-practices
https://chris.beams.io/posts/git-commit/

GitHub GitHub

pull request: code review, discussion, changes

UPSTREAM

ORIGIN
me/junit5

junit-team/junit5
fork

feature feature
branch
merge
commit
fetch clone
add remote feature push

branch

Software Architecture:
Views and Models

Arie van Deursen

Wikipedia, Dom-Ino House, Corbusier

Capturing the Architecture

* Every system has an architecture
* Some architectures are manifest and visible, many others are not

* A system's architecture may be visualized and represented using
models that are somehow related to the code

* An architectural model is an artifact that captures a selection of key
design decisions

 Architectural modeling is the reification and documentation of those
design decisions.

Abstraction and Interpretation

Abstraction

some information
Is intentionally
left out

Real Interpretation
System solve ambiguities
add missing
decisions

* The architecture models only some interesting aspects of a
software system. »

Solving Problems with Models

Abstract

Abstract
Problem

Solution

‘ Interpretation

Problem |[Solve directly > Solution

Abstraction

=
Y
<

(%2
>
Y

=

» Abstract models help to find solutions to difficult engineering
problems.)

Question First, Model Second

* Different models have different purposes

* Know what questions you want the model to answer
before you build it

George Box: All models are wrong, but some are useful

Shneiderman’s (visualization) mantra:
Overview first, zoom and filter, details on demand

http://www.codingthearchitecture.com/2015/01/08/shneidermans_mantra.html

22

Software
Architecture

Ch. 4

The “Domain Model”

e Refutable truths about the real-
world

* Qutside your control

* Your system will be evaluated
against it

 Architecturally significant
requirements

* Problem domain description:
* Information (invariants,
navigation, snapshots)

* Functionality (use-case
scenarios, feature models)

* Define shared vocabulary and
understanding towards your
customer, domain expert

Design Model

Refutable truths about your e Interfaces (externally visible
system behavior, data interchange)

Within your control « Quality Attributes (how to
achieve them)

Prescriptive: Your system will
be built based on it o Structural decomposition,
component assembly

Descriptive: Your system is

represented by it e Define shared vocabulary and
understanding within the
development team

Software
Architecture

What is a view?

« No single modeling approach « A view is a set of design
can capture the entire decisions related by common

complexity of a software concerns (the viewpoint)
architecture

Ch. 4

e Various parts of the
architecture (or views) may
have to be modeled with a
different: Viewpoint

 Notation < System >

o Level of detail

e Target Audience

25

Views on

Kessel
Castle

o)
b
(b
O
-
v
>
()
N

Iew

The legacy v

1400
1850

« Modeling the
“ : Foundations

A view on the roof

A view
on the
floors

Design pattern
from Le Corbusier

x

7
\&w

1t
&) \\\\

.\
74

ew

air flow

A Vi
on the

The Room Configuration View

A view
on the
context

33

Views on

Kessel

Castle

o)
b
(b
O
-
v
>
()
N

Reconstruction 2015

How many views?

o System Context e Security

e Functional * Performance and Scalability

e Logical e Availability and Reliability

e Physical e Evolution

e Deployment e Teachability g
« Development ("Welcome to the team") 2
« Information * Regulatory :
* Process e Marketing

e Concurrency e Business Impact

e Operational

35

. Dist'mgu'\sh what ne
e dependenc'\es an

define th

eds to be puilt

rom what alre

d the integration poin

System Context View Example

listen

charge|customers

Payment
System

provide

Containers View

* What are the main logical
execution environments in
which the system can run?

e Containers can be deployed
separately and independently
evolved

e Container: architectural
abstraction (beyond Docker)

Examples:

* Server-side Web application

* Client-side Web application

* Client-side desktop application
* Mobile app

* Server-side console application

* Shell script
 Microservice

e Data store

Software
Architecture

Ch. 4

Container View Example

listen A
Customer Songs orovide @
Database Repository ||content for

charge|customers

Payment
System

38

Components View

e What is the structural decomposition of the software with related
functionality encapsulated behind a well-defined interface?

* What are the dependencies between components?

* Are there shared components that will be deployed in multiple
containers?

* What is the technology used to build the components?
(programming languages, framework decisions)

Components View Example

listen

with

App
User Music
Interface Player
| I
User Songs
Account Cache

download music

Customer Songs
Database Repository

40

Ch

Software
Architecture

for Developers

https://c4model.com/

Context

Components

Classes

a4l

Software System

Container

(e.g. client-side web app, server-side web app, console application,
mobile app, microservice, database schema, file system, etc)

Component

42

The C4 model for visualising
‘ software architecture

cdmodel.com

E Zoomin

Sy Comeen g o et Sarrg ot

Level 1
Context

Level 2
Containers

Level 3
Components

Level 4

Code

43

http://www.codingthearchitecture.com/2015/01/08/shneidermans_mantra.html|

System Context

The system plus users
and system dependencies

Containers

The overall shape of the architecture
and technology choices

Components

Logical components and their
interactions within a container

Classes

Component or pattern
implementation details

Overview
first

Zoom and
filter

Details
on demand

44

C5

Context

Components

Classes

©
2
2
®,
S
Jpr

Connectors View

 How are component interfaces interconnected?
« What kind of connector(s) are chosen?
 What is the amount of coupling between components?

These decisions may depend on the deployment configuration

45

Can you think of a
(different) type of

connector for each line
between two
components?

App
User Music
Interface Player
User Songs
Account Cache
Customer Songs
Database Repository

46

Connectors
View
Example

message :
User el Music
Interface - Player
call U App Tstream
User Songs
Account Cache
: 3
remote call | Djﬁle transfer
Customer Songs
Database Repository

|IEEE Software, November 1995

Philippe Kruchten’s “4+1 Views”

End User Programmers
Functionality Software Management
Logical Implementation
View View
Analysts/Testers Use-Case
Behavior View
Process Deployment
View View
System Integrators System Engineering
Performance System Topology
Scalability Delivery, Installation
Throughput Communication 48

Software
Architecture

Kruchten’s “Logical View” chg
* Similar to C4 component view

* Decompose the system structure into
software components and connectors

* Map functionality/requirements/use cases onto the components

* Concern: Functionality
* Target Audience: Developers and Users

Software
Architecture

Example Logical View

= LI | 1| R
Music Player)_ User Interface \Q‘ Customer Database —

€]]
Songs Repository Payment Service

50
www.plantuml.com

Kruchten’s “Process View”

* Model the dynamic aspects of the architecture:

* Which are the active components?

* Are there concurrent threads of control?

e Are there multiple distributed processes in the system?
* What is the behavior of (parts of) the system?

* Describe how processes/threads communicate
(e.g., remote procedure call, messaging connectors)

* Concern: Functionality, Performance
* Target Audience: Developers

Software
Architecture

ch.4

Software
Architecture

Example Process View

Ch. 4

User Interface l Music PIayerI Songs Repository l Customer Database I Payment Service I

|
: Browse Songs

| | | |

I | | |

| | | |

r T)l | |

I B I | | |

i _ List of Songs | | | .

I(T 1 | |

| I | | |

Buy Son

Burseng : > |

| | : | Charge Customer |

I I | I >I

alt J\ [payment success] | | I

: : | | ok :

| | [1. 1

E Play Song)E E E i

| | Get Music : : |
________________ l__""""““""""""""l_"""_""""““"""_""?l_“""_"""""““"""""""""l""_""""““"""_"""““""_I"""""““""_

[paymentffnil] : } |f :

! ! ! I refused '

| | | l(|

| | | | |

:(show payment failed error : : !

User Interface l Music PIayerI Songs Repository l Customer Database I Payment Service I

52
www.plantuml.com

Software
Architecture

Kruchten’s “Development View” (chg

e Static organization of the software code artifacts
(packages, modules, binaries...)

* Map logical view onto code
* Describe code review, contribution, and build process

* Concern: Reuse, Portability, Build

First line of thinking for

* Target Audience: Developers “us, developers”

53

https://www.blender.org/bf/codelayout.jpg

Blender code layout

@ Modules only call lower level code
Q@D Modules call each other, and lower level code

T o s VO TSN RN SRR s s s
creator blenderplayer
blender/source/ Blender's main() player main()
Ml PR e e Editor definitions, drawing, interaction - ----------
space_action space viewdd space_buttons space console space _file space _graph
action editor 3d viewport I property editor. python console file browser function curve edit
—— —— —— S ——
space image space_info space_logic space_nla space_node space_outliner
image editor top menu bar game logic edit non lin. anim. ed node editor outliner
blender/source/blender/editors T EEEE—_—_—_—_——- — —— S ———
space_script space_sequencer| | space_sound space text space_time space userpref
depricated? video editor depricated? text editor time line user preferences
et ———— — — ——
P o e e s e BTNV R vt e W 44 S e
: util screen interface datafiles space api
blender/source/blender/editors undo system general screen api buttons / menus icons, splash, ... generic editor ap

animation armature | curve gpencil uvedit
fcurve ops armature / pose curve ops grease pencil uv edit operators
— —— e
mesh metaball object physics render
mesh ops meta ball ops object operators particles, fluid editor render api
— —— —
blender/source/blender/editors
sculpt_paint sound transform
painting ops sound operators transform ops
— —
include
all editor includes
M R S Windows, events, operators, core interaction - - - ------
blender/source/blender/ I windowmanager l
general window/event handling
. ededaieinistet Sl S ainnine Game & Render enging - --------------
blender/source/ m: blender/source/dlender/ m
* - —m— e ———— - General Blender APIs - - - - === === == - - -~
makesdna makesrna I blenkernel blenloader
Blender data def. Blender data APl generic data .blend files
Diencesecusca/inde e Mot | 'nterfat: fonts mrll: lib funcs. :uengl functions
——— — ——
imbuf python collada modifiers I nodes I
blender image i Blender py API blender api level for mesh/curve compo/matiex
—————

audaspace boolop bsp container decimation
sound library mesh booleans spatial partition. cpp hash supporf mesh reduction
—— e —— S —
ghost guardedalloc iksolver itasc memutil
windows/events secure mem alloc inverse kinemat. IK controllers memory cache
blender/intern/ —— — — —
moto opennl| smoke string
motion for GE numerical lib smoke simulatior] string utils
——
emecrcceme—- Utility Libraries (from external development) - == === - - - -
Math functions g.p;lGL versioning g’""') surface :vy.;gs & collisions :peg ZOIII)mi)
blender/extern/
binreloc libredcode lzma “ lzo I
executable pa Red image format data compression || data compression
oo e e Pre-compiled Libraries (in svn, or require install) - - - --------
ffmpeg fftw3d freetype gettext ipeg
libs movie library fast fourrier lib font library translation lib jpeg image lib
— ———
openal opencollada openexr png python samplerate
audio library 3d file format ILM image lib image lib scripting library ' I audio lib '
— —— ———
sdl sndfile tiff
used for audio audio file lib image library
— ———
MR el kvl e e M e i N ot oo st o s i 0
openGL |shndatdc | Ic«nndm ' ‘WInICooodxn l
graphics library

'?
Y

und space_nla S Y zer a
. S\ N NN AT A Py 7
AN AR .l AL / n‘_‘I' ;g.gl \ ,
AN SN AN i A 0 g o
R b7 e
L : urce/ole A D2+ ez 7 /’/%4///‘
- VIR 4 , AU %

/4
purze/blender/editors/ren par openvd

XA

6 RN e
\‘E \\\')"‘

gizmo_librarya‘;\?. :
AVA xS

\§\§;¥ _‘;\

TS
a2 a
r‘ s R
T
_userpri pace_graph e B s

opencolorio

, 7 L’ . e S :\',/ ""'\ \

S /” -//‘»/"i"i,' i “ ,“; / *v:p':) ‘\‘ A ’ S\
) {7 A 2 \ \

,’/,ifl"‘“l(o L Y.

space_file Sl

o —.
R \\'m'..!t\l‘_

. 4 "y, A
APTANE <A\ X
‘ S =

“y;n,b”f ?Q\Vgcompccitui?‘

rigidbody

d

i
l*., ih_—-'-“rternlu;'cni;lrende A

PP wy
/

ffmpeg

Kruchten’s “Physical View”

* Define the hardware environment (hosts, networks, storage, etc.)
where the software will be deployed

* Different hardware configurations for providing different qualities
* Deployment View: Mapping between logical and physical entities

* Virtual is the new physical
e Amazon’s “AWS Well-Architected Framework”

* Concern: Performance, Scalability, Availability, Reliability, Security
* Target Audience: Operations

Software
Architecture

ch.4

Software
Architecture

4+1: Connecting
Kruchten’s
Views with Use Cases

Ch. 4

Example Music Player Scenarios

. Browse for new songs
. Search for interesting songs

e Views should not contradict
each other

. Play the song sample
. Pay to hear the entire song
. Download the purchased song on the device

e Use cases can be “executed”

. . . Play the song
in each view

. Play multiple songs on a predefined playlist
. Play multiple songs in random order

O 00 N O U &~ W N -

. Share songs with friends

Development . Make a backup of the device's content

Logical

=
o

=
[ERY

. Suggest related songs

Use Case
Scenarios

=
N

. Generate a tasteful playlist

=
(S8

. Display album cover image
. Show the device's battery status
. Record sounds with a microphone

Process Physical

=
£~

=
Ul

Rozanski & Woods Viewpoint Taxonomy

Deployment " defines operation of Operational

View View

defines runtime
environment for

defines scope, context, defines implemention
and interfaces for Software constraints for Development
Context View . — .
Design View
Software Systems

\rchitecture
() semitiiy,
Information Concurrency .

Functional View View e

NICK ROZANSKI - EOIN WOODS

Documenting
Software
Architectures

“SEI DSA” Taxonomy

“View types”:

U]
74
x
w
W
4
0
z
W
* Module g
14
* Component & Connector $
[
 Allocation o
(i}
E ,
Module Component- Allocation o
and-Connector o Views
E ' and
E Beyond
W
Decomposition Class Client- |Process Shared o
Server Data Deployment
v SECOND EDITION
Uses Comm Implementation
Work Paul Clements « Felix Bachmann « Len Bass
v m‘mm David Garlan « James Ivers * Reed Little
Lﬂyefed Paulo Merson = Robert Nord + Judith Stafford

arc42.org: A Template for Architecture
Communication and Documentation

1. Introduction and Goals

2. Constraints ®+

3. Context and Scope

Stakeholder

Goal Description Who? | Expectation?

Scope & Context

business technical

=

o

62

The arc42.org Template for
Architecture Communication and Documentation

4.

Solution strategy

Building block view = = =

. . Cc tti

Run time view | Concepts .
Logging

Ul /ux

Deployment view H patus

Crosscutting concepts

Architectural decisions \ /

63

The arc42.org Template for
Architecture Communication and Documentation

Usage
. . % — 3 System —>@
10. Quality Requirements / =
O etric
% <
Event, stimulus Reaction

/@
11. Risks and Technical Debt ArC

arc42 Documentation
139 tips how to use the arc42 template.

Essay 2: The System’s Architecture

. The main architectural style or patterns applied (if relevant), such as layering or model-view-controller
architectures.

2. Containers view: The main execution environments, if applicable, as used to deploy the system.

. Components view: Structural decomposition into components with explicit interfaces, and their inter-
dependencies

. Connectors view: Main types of connectors used between components / containers.

. Development view, covering the system decomposition and the main modules and their dependencies, as
embodied in the source code.

. Run time view, indicating how components interact at run time to realize key scenarios, including typical run
time dependencies

. How the architecture realizes key quality attributes, and how potential trade-offs between them have been
resolved.

. APl design principles applied

Softwa
ModL

re Architecture:
larization and

Inte

face Design

Arie van Deursen

rbusier

, Co

Wikipedia, Dom-Ino House

Software Component

e Locus of computation and state in a system

@ | Processing (

Provided Required
Interface Interface

Environment

67

Software
Architecture

Sorts of Components s

Infrastructure Application-specific

* Address needs of multiple * Directly implement main
application domains functionality

* Highly reusable * Domain knowledge intensive

* Customizable * Less suitable for reuse

* Support non-functionals

Media Math GUI Web Database MP3 | |Payment|| Song Play | |Customer
Player || Library | | Toolkit | | Server Codec || Service |[|Classifier || List Data

68

Distributed Components

« Components can be deployed « Components can be
on the same physical host distributed over multiple
physical hosts

69

Components Objects
Abstraction Architecture Code
Encapsulation State and State and Functionality
Functionality
Granularity Coarse-grained Fine-grained
Modularity Unit of Composition Identifiable Unit of
and Deployment Instantiation
Interface Well-defined, Optional
documented
Reusability Explicit Entangled with other

dependencies (can
be self-contained)

objects (hard to reuse
by itself)

70

Software
Architecture

Ch.'5

Software
Architecture

Interface Description Languages 1020 Ch'6

2010
2000

1980 \
RAML_|
I CORIBA WSDL J Swagger
DCOM IDIL —7
MIDL

Java Interfaces J

71

Application Programming Interfaces

e APIs are not found in all
architectures:

* APIs can be found in
architectures that are
designed to be

e open and stable platforms

e supporting externally
developed components and
applications.

|

Application

Component

Software
Architecture

ch.6

- API

72

Essay 2: The System’s Architecture

. The main architectural style or patterns applied (if relevant), such as layering or model-view-controller
architectures.

2. Containers view: The main execution environments, if applicable, as used to deploy the system.

. Components view: Structural decomposition into components with explicit interfaces, and their inter-
dependencies

. Connectors view: Main types of connectors used between components / containers.

. Development view, covering the system decomposition and the main modules and their dependencies, as
embodied in the source code.

. Run time view, indicating how components interact at run time to realize key scenarios, including typical run
time dependencies

. How the architecture realizes key quality attributes, and how potential trade-offs between them have been
resolved.

. APl design principles applied

