
Software Architecting for Distribution

Burcu Kulahcioglu Ozkan

IN4315 Software Architecture

b.ozkan@tudelft.nl
https://burcuku.github.io/home/

mailto:b.ozkan@tudelft.nl

Outline & Objectives

2

Why distribute? Evolution of
architectures

How to replicate
data?

Trade-offs

What is a distributed application?

“A distributed system is collection of independent computers that appears to its users as a single
coherent system” [Tanenbaum and van Steen, 2007]

3

upload video A

get video A

“A distributed application is an application that solves a large problem by breaking it down into several
tasks where each task is computed in the individual computers of the distributed system”

Why do we distribute?

§ Performance
§ Scalability
§ Availability
§ Fault tolerance

4

Why do we distribute? – Performance & scalability

§ Performance
§ Responsiveness: how long it takes an application to respond to a request
§ Throughput: the number of transactions successfully executed per second

§ Scalability
§ Ability to handle increase in workload

5

1. Upload video

2. Encode/compress
video3. Done

Image from: “Software Architecture”, Cesare Pautasso, 2020

Why do we distribute? – Scalability

§ Size scalability
§ No performance degradation when added more users or resources

§ Geographical scalability
§ No performance degradation when clients and resources may lie far apart

§ Administrative scalability
§ Increasing number of organizations/users to easily share the system

§ Functional scalability
§ New features can be added easily without disrupting existing ones

6

………………………………..

Why do we distribute? – Availability & fault tolerance

Availability:

§ Is the system running?
§ Is the system accessible?

7

upload video A get video A

1. Upload video

2. Encode/compress
video3. Done

Faults due to a variety of factors:

§ Hardware failure
§ Software bugs
§ Network errors/outages

A recent availability incident (Cloudflare API, November’20)

8
https://blog.cloudflare.com/a-byzantine-failure-in-the-real-world/
https://status.cloud.google.com/incident/zall/20013
https://aws.amazon.com/message/11201/

and many more…

Examples

Sources:

Outline & Objectives

9

Why distribute? Evolution of
architectures

How to replicate
data?

Trade-offs

§ Scalability

§ Performance

§ Availability

§ Fault-tolerance

Evolution of distributed applications – Monolithic architectures

§ Early days of internet, monolith applications: software is developed as a single unit

§ Components are interdependent in the code level

§ Centralized server architecture: multiple clients share the same server

10

• Not fault tolerant
- Single point of failure

• Not scalable
- Increasing number of client requests?
- Increasing complexity of the application?

UI logic
Application logic

DB layer

upload video A

get video A

• Suitable for small teams, small projects, start-ups
• Simpler development and deployment

UI logic
Application logic

DB layer

upload video A

get video A

Evolution of distributed applications – Monolithic architectures

§ Scale up - Vertical scaling: Increase CPU power, memory & disk space

11

• Not fault tolerant
- Single point of failure

• Limits to scalability
- The computational capacity, limited by the CPUs
- The storage capacity, including the transfer rate between

CPUs and disks
- The network between the user and the service

Evolution of distributed applications – Monolithic architectures

§ Scale out - Horizontal scaling: Add more servers, introduce parallelism

12

- Fault tolerant (by replication)

- Scalable?
✓ Increasing number of client requests?
- Increasing complexity of the application?

Scaling LinkedIn – LEO Monolith

§ Started as a monolith in 2003

§ A system for querying membership using graph traversals: Member Graph

§ Read-only replicas for scalability

13

Example

https://engineering.linkedin.com/architecture/brief-history-scaling-linkedin

LinkedIn’s first service:

Evolution of distributed systems – Service-oriented architectures (SOA)

§ In the early 2000s, SOA emerged as a paradigm for distributed applications
§ Decompose the application into services, split responsibility
§ Design to share resources across services
§ Design interoperable components which communicate by a common API (e.g. SOAP)

A SOA service:

§ Logically represents a business activity with a
specified outcome

§ Is self-contained

§ Is a black-box for its consumers

14

Video Streaming Application

Commenting
server

Video
streaming

server
Payment

server

Analytics
server

Evolution of distributed systems – Service-oriented architectures (SOA)

§ In the early 2000s, SOA emerged as a paradigm for distributed applications
§ Decompose the application into services, split responsibility
§ Design to share resources across services
§ Design interoperable components which communicate by a common API (e.g. SOAP)

15

Video Streaming Application

Commenting
server

Video
streaming

server
Payment

server

Analytics
server

• Scalable
✓ Increasing number of client requests?
✓ Increasing application complexity?
✓ Increasing administration complexity?

• Fault-tolerant

• Reusable

• Modular

Evolution of distributed systems – Service-oriented architectures (SOA)

§ Transition from human-oriented interaction to machine-machine interaction

§ Challenge: How to communicate the services?
§ Enterprise service bus (ESB) - an additional messaging layer removing point-to-point messaging

16
https://dzone.com/articles/apache-kafka-vs-integration-middleware-mq-etl-esb

Message Brokers

§ Architectural pattern for application-level message validation, transformation, and routing

§ Decouples producers and consumers

§ Asynchronous communication & processing

17

…

Performance might degrade
with intermittent heavy loads

The service will be able to handle
the messages at its own pace

…
e.g. notification

service work queue

Fair dispatch:
• Send messages to available consumers
• Better distribute workload

Publish/subscribe:
• Deliver one message to multiple consumers
• More common in microservices

Scaling LinkedIn – Service-oriented architecture

§ As the site began to get more traffic LEO started going down in production

§ Difficult to troubleshoot, recover, release new code

§ “Kill Leo monolith” and break it up into small services

18

Example

https://engineering.linkedin.com/architecture/brief-history-scaling-linkedin

publisher-subscriber
messaging platform

Evolution of distributed systems – Microservice architectures

§ Build an application as a collection of loosely-coupled microservices

§ Design to make each functionality separate as a service and a self-contained

§ Microservices are the resulting standalone services after breaking a software application down into
separate components that perform their functions

19https://www.devteam.space/blog/microservices-vs-soa-and-api-comparison
https://dzone.com/articles/microservice-architecture-learn-build-and-deploy-a

Microservice Architecture of Uber

Service-oriented archirecture vs Microservice architecture

20
https://dzone.com/articles/microservices-vs-soa-whats-the-difference

SOA MSA

Follows “share-as-much-as-possible” architecture approach Follows “share-as-little-as-possible” architecture approach

Importance is on business functionality reuse Importance is on the concept of “bounded context”

They have common governance and standards They focus on people, collaboration and freedom of other options

Uses Enterprise Service bus (ESB) for communication Simple messaging system

They support multiple message protocols They use lightweight protocols such as HTTP/REST etc.

Multi-threaded with more overheads to handle I/O
Single-threaded usually with the use of Event Loop features for non-
locking I/O handling

Maximizes application service reusability Focuses on decoupling

Traditional Relational Databases are more often used Modern Databases are more often used

A systematic change requires modifying the monolith A systematic change is to create a new service

DevOps / Continuous Delivery is becoming popular, but not yet
mainstream

Strong focus on DevOps / Continuous Delivery

Evolution of distributed systems – Microservice architectures

§ Microservices are an architectural approach to creating cloud applications

§ Microservices in the cloud: Software-as-a-service
§ Hosted on a remote server, accessible over the internet
§ Users are not responsible for hardware or software updates

21

Comments

Video
encoding

per format

Credit card
payment

Video
analytics

…

…

…

…

Paypal
payment

Notifications

Payment
analytics

Comment
analytics

Likes

Video
decoding

per format

• Scalable
• Fault-tolerant
• Available

Cloud services and applications

22
Image from: https://azure.microsoft.com

ß Less effort to manage More levels of control à

Modern systems move towards more decentralization

23

“If you go back to 2001, the Amazon.com retail website
was a large architectural monolith”
Rob Brigham, Amazon AWS senior manager

Current structure of microservices at Amazon

But still... One approach does not fit all.
LinkedIn's operational setup as of 2015

Examples

Cloud services and applications

24
Image from: imelgrat.me

As software developers,

we should know

what guarantees / choices

are provided in the services

we build our applications on.

https://imelgrat.me/wp-content/uploads/2018/06/Cloud-Delivery-Models.png

Outline & Objectives

25

Why distribute? Evolution of
architectures

How to replicate
data?

Trade-offs

§ Scalability

§ Performance

§ Availability

§ Fault-tolerance

From centralized to
decentralized

§ Monolithic server

§ Service oriented

§ Microservices

(Cloud-based services)

Why replicate data?

§ Size scalability

§ Geographical scalability

§ Availability

§ Fault tolerance

26

§ Costly
§ Computational resources

§ CAP impossibility
§ Mainly between availability and consistency

What are the cons/challenges?

How to replicate data?

§ Replication of stateless components or
read-only data?

§ Replication of stateful components or
mutable data?
§ Single-leader
§ Multi-leader
§ Leaderless

27

Leader-based replication

§ One of the replicas is the leader (or primary copy), the others as followers (or secondary copies)

§ Write queries are only accepted on the leader, and sent to followers

§ Clients can submit read queries to the leader or any of the followers

28

upload video

… …

Leader

Followers

How to do the replication to followers?
• Synchronously?
• Asynchronously?

Leader-based replication - Synchronous

29

§ The leader waits until the followers receive the update and before reporting success
üA follower is has up-to-date copy
ü If the leader fails, data is still available on the follower
- Writes are blocked if a follower is not available

… …

Leader

Followers

OK impractical for all
followers to be
synchronous

Leader-based replication - Asynchronous

30

§ The leader reports success and asynchronously updates the followers
üWrites are not blocked in case of inaccessible follower
- A follower is not guaranteed to have an up-to-date copy of the data
- Writes are not guaranteed to be durable in case of leader failure

… …

Leader

Followers

OK OK Semi-synchronous:
Some followers are updated
synchronously some are
updated asynchronously

Compromise between two models:

Leader-based replication – Failure Scenarios

§ How to set up a new follower?

§ How to handle component failures?
§ Follower failure: Catch-up recovery
§ Leader failure: Failover

31

… …

Leader

Followers

Leader

Leader-based replication – Asynchronous

§ Asynchronous followers may not have up-to-date data

§ Possible to observe anomalous behaviors

32

upload video

… …

Leader

get video

Followers

get video

Wow, have you seen

the video?

Which video?

Multi-leader replication – Conflicting updates

§ Multiple leader nodes to accept writes

§ Replication to followers in a similar way to single-leader case

33

…

Leader

Followers

…

Leader

Followers

Conflict
resolution

Conflict
resolution

write (name, X)

write (name, Y)

Conflict resolution
decides on the final
value of “name”

Multi-leader replication – Ordering problems

§ Writes may arrive in the wrong order to some replicas

34

Leader 1

Leader 3

write (post1, “I
think Billy is

missing”)

write (post3,
“What a relief!”)

Leader 2

write (post2,
“False alarm! Billy is

out to play”)

Example scenario from: “Bolt-on Causal Consistency”, SIGMOD’13

wrong order of updates at Leader 2

Leaderless Replication – Asynchronous reads/writes

§ No leader – any replica can directly accept writes from clients

§ Asynchronous replication can cause:

35

Conflicting concurrent updates Ordering problems

write (post, X)

write (comment, Y)

wrong order
of updates at
replica 2

write (name, X)

write (name, Y)

what’s the
final value of
“name”?

Leaderless Replication – Quorum based read/writes

§ Writes are successful if written to W replicas

§ Reads are successful if written to R replicas

36

write (image, X)

read (image)

OK

OK

“”, v.0

“X”, v.1

“X”, v.1

W + R > N

We expect to read up-to-date value

W < N

We can process writes if a node is unavailable

R < N

We can process reads if a node is unavailable

N = 3, W = 2, R = 2:

We can tolerate one faulty node

N = 5, W = 3, R = 3

We can tolerate two faulty nodes

Example scenario with N=3, W=2, R=2:

Leaderless Replication – Quorum based read/writes

§ Even with W + R > N, there are some limitations:
§ In case of concurrent writes and reads, undetermined which value will be read
§ In case of both successful and unsuccessful writes, rollbacks can cause undetermined reads
§ Possible to have conflicting concurrent writes
§ W writes may end up in different nodes than R reads (edge case)

37

write (image, X)

read (image)

OK

OK

“”, v.0

“X”, v.1

“X”, v.1

What guarantees for

writing/reading values is

provided by a system?

Outline & Objectives

38

Why distribute? Evolution of
architectures

How to replicate
data?

Trade-offs

§ Scalability

§ Performance

§ Availability

§ Fault-tolerance

From centralized to
decentralized

§ Monolithic server

§ Service oriented

§ Microservices

(Cloud-based services)

§ Leader-based
• Synchronous
• Asynchronous

§ Multi-leader

§ Leaderless

Consistency model (aka semantics)

§ A contract between programmer and system: The system specifies the possible results of operations
§ What can be possible results of a read operation?
§ What are possible write operations? Are concurrent updates allowed?
§ How is the last value of an object is determined?

§ E.g. Consistency notions from concurrent programming
§ What are the possible values to be printed by the following multithreaded program?

39

int a = b = 0

a = 1
print(b)

b = 1
print(a)

Thread-1 Thread-2

Sequential consistent memory: 01, 10, 11

Weakly consistent memory: 01, 10, 11, 00

Consistency models

Linearizability

40

many more models
of weak consistency

weaker

Sequential Consistency Causal Consistency Eventual Consistency

stronger

Linearizability

§ There exist a total ordering of operations - the same total order at each replica

§ The total order preserves real-time ordering

41

§ Linearizable

write (name, “A”)

write (name, “B”)

read (name, “A”) read (name, “B”)

read (name, “A”) read (name, “B”)

§ Not linearizable

write (name, “A”)

write (name, “B”)

read (name, “B”) read (name, “A”)

read (name, “B”) read (name, “A”)

The images only show the client interactions with replicas

Sequential consistency

§ There exist a total ordering of operations - the same total order at each replica

42

§ Sequentially consistent

write (name, “A”)

write (name, “B”)

read (name, “B”) read (name, “A”)

read (name, “B”) read (name, “A”)

§ Not sequentially consistent

write (name, “A”)

write (name, “B”)

read (name, “B”) read (name, “A”)

read (name, “A”) read (name, “B”)

The images only show the client interactions with replicas

Causal consistency

§ Causally related operations are delivered to other replicas in the correct order
(Operations are partially-ordered)

43

write (post1,
“I think Billy
is missing”)

write (post3,
“What a relief!”)

write (post2,
“False alarm! Billy

is out to play”)

Disallowed by causal consistency: Scenario using causal consistency:

write (post1,
“I think Billy
is missing”)

write (post3,
“What a relief!”)

write (post2,
“False alarm! Billy

is out to play”)

Are the executions causally consistent?

§ Causally consistent

44

Examples

write (name, “A”)

write (name, “B”)

read (name, “A”) read (name, “B”)

read (name, “B”) read (name, “A”)

§ Not causally consistent

write (name, “A”)

write (name, “B”)

read (name, “B”) read (name, “A”)

read (name, “A”) read (name, “B”)

read (name, “A”)

The images only show the client interactions with replicas

Causal consistency

§ Causally related operations are delivered to other replicas in the correct order

§ Concurrent writes may be seen in a different order on different replicas

45

write (post1,
“Let’s go to

movies”)

write (post1, “Let’s
go to a picnic”)

“Picnic” was delivered

before “movies”

“Movies” was delivered

before “picnic”

Causal consistency

46

write (name, X)

write (name, Y)

Some systems use “conflict-free” data types
e.g., Conflict-free replicated data types (CRDTs), or cloud types

addToList (apple)

addToList (milk)

list: {apple, milk}

what’s the
final value of
“name”?

list: {apple, milk}

list: {apple, milk}

§ (Potentially) causally related transactions are delivered to other replicas in the correct order
§ Concurrent writes may be seen in a different order on different replicas
§ Allows concurrent conflicting writes

§ Causal+ consistency: Replicas eventually converge

Eventual consistency

§ All updates are eventually delivered to all replicas

§ All replicas reach a consistent state if no more user updates arrive

47

…

Examples:

§ Search engines
§ Search results are not always consistent with

the current state of the web

§ Cloud file systems
§ File contents may be out-of-sync with their

latest versions

§ Social media applications
§ Number of likes for a video

Implementing linearizable systems

§ Illusion of a single copy of the data and all operations on it are atomic
§ Single-leader replication
§ Multi-leader replication
§ Leaderless replication
§ Some consensus algorithms provide linearizable executions

§ It is costly to implement linearizability
§ High read and write latencies

48
Read more: Chapter 5 of “Designing Data-Intensive Applications”, Martin Kleppmann, 2017

(potentially linearizable)

(not linearizable)
(not linearizable)

49

Recap: Replication, availability, consistency, partition tolerance

Image from: “Software Architecture”, Cesare Pautasso, 2020

50

CAP Theorem

Impossible to get all three of:

§ (Strong) Consistency – All nodes in the network
have the same (most recent) value.

§ Availability – Every request to a non-failing
replica receives a response

§ Partition tolerance – The network continues to
operate in the existence of component or
network faults

51

CAP Theorem

Impossible to get all three of:

§ (Strong) Consistency – All nodes in the network
have the same (most recent) value.

§ Availability – Every request to a non-failing
replica receives a response

§ Partition tolerance – The network continues to
operate in the existence of component or
network faults

Consistency

Partition
tolerance

Availability

CP

AP

CA

Not availableNot replicated

Not consistentThe trade-off is not
Availability vs Consistency

but
Availability vs Strong Consistency

52

Systems’ CAP choices

Consistency

Partition
tolerance

Availability

CP

AP

CA

CouchDB
Cassandra
DynamoDB
Riak

e.g. MongoDB
leader based replication

Cassandra provides
tunable quorum reads/writes

MongoDB
Hbase
Redis

Relational
DBMS

Examples

53

What are the distributed components in the system?

What information do the components exchange with each other?

How do the system components communicate with each other (e.g., synchronously or asynchronously)?

What kind of faults does the system tolerate? How does it handle failing components?

What are the trade-offs of the distributed design (consistency, availability, partition-tolerance)?

“Well, we’ll be using some existing systems/services when building our
applications. Do we need to know internal design choices of these systems?”

“Yes! Trade-offs and limitations of the underlying services you use
reflect on your application.”

Outline & Objectives

54

Why distribute? Evolution of
architectures

How to replicate
data?

Trade-offs

§ Scalability

§ Performance

§ Availability

§ Fault-tolerance

From centralized to
decentralized

§ Monolithic server

§ Service oriented

§ Microservices

(Cloud-based services)

§ Leader-based
• Synchronous
• Asynchronous

§ Multi-leader

§ Leaderless

CAP Impossibility:

§ (Strong) Consistency

§ Availability

§ Partitioning

