Software Architecting for Distribution

IN4315 Software Architecture

Burcu Kulahcioglu Ozkan

b.ozkan@tudelft.nl
https://burcuku.github.io/home/

%
TUDelft
e

mailto:b.ozkan@tudelft.nl

Outline & Objectives

£) ? N

Why distribute? Evolution of How to replicate Trade-offs
architectures data?

What is a distributed application?

“A distributed system is collection of independent computers that appears to its users as a single
coherent system” [Tanenbaum and van Steen, 2007]

“A distributed application is an application that solves a large problem by breaking it down into several
tasks where each task is computed in the individual computers of the distributed system”

&D upload video A

»

d
<«

O .
QD get video A

»
»

Why do we distribute?

" Performance
= Scalability
= Availability

=" Fqult tolerance

Why do we distribute? — Performance & scalability

= Performance

= Responsiveness: how long it takes an application to respond to a request
= Throughput: the number of transactions successfully executed per second

A Response A Throughput
1. Upload video Time (req/s)
— »
. N 2. Encode/compress
L 3. Done 7 video @0 0@ | —
Workload - Workload g
= Scalability

= Ability to handle increase in workload

Why do we distribute? — Scalability

1 1h O O cg—
= Size scalability ero s =

— I
= No performance degradation when added more users or resources

= Geographical scalability o @

= No performance degradation when clients and resources may lie far apart

= Administrative scalability =N
" |[ncreasing number of organizations/users to easily share the system

S e

® Functional scalability
= New features can be added easily without disrupting existing ones

Why do we distribute? — Availability & fault tolerance

Availability: 5 5
" Is the system running? upload video A get video A
" |s the system accessible? } 4
4)
1. Upload video A 2 [Qé A =
' @ ™ 2. Encode/compress [t:%/ [Qé é [t;é/
=y 3.Done 7 video - A
‘ \ 5
2\ g = @ 2 .
Faults due to a variety of factors: _ = .

= Hardware failure

= Software bugs
= Network errors/outages (;
7

A recent availability incident (Cloudflare API, November’20)

An analysis of the Cloudflare API availability incident on 2020-11-02

When we review design documents at Cloudflare, we are always on the lookout for
Single Points of Failure (SPOFs). Eliminating these is a necessary step in architecting a
system you can be confident in. Ironically, when you're designing a system with built-in
redundancy, you spend most of your time thinking about how well it functions when
that redundancy is lost.

On November 2, 2020, Cloudflare had an incident that impacted the availability of the
APl and dashboard for six hours and 33 minutes. During this incident, the success rate
for queries to our API periodically dipped as low as 75%, and the dashboard experience
was as much as 80 times slower than normal. While Cloudflare’s edge is massively
distributed across the world (and kept working without a hitch), Cloudflare's control
plane (API & dashboard) is made up of a large number of microservices that are
redundant across two regions. For most services, the databases backing those
microservices are only writable in one region at a time.

The leader is down!

and many more...

Microsoft Azure, March 3

It was an initial early March six-hour outage that struck the US East data
center for Microsoft’s Azure cloud, limiting the availability of Azure cloud
services for some North American customers. Microsoft then disclosed that a
cooling system failure was the cause of the outage. Malfunctioning building
automation controls caused a reduction in airflow, and the subsequent
temperature spikes throughout the data center hampered the performance of
network devices, rendering compute and storage instances inaccessible.

Microsoft ultimately reset the cooling system controllers, and once the
temperature fell, engineers power-cycled hardware to resume services.

Summary of the Amazon Kinesis Event in the Northern Virginia (US-EAST-1) Region

—_—— —
— o — November, 25th 2020
— The leader is fine —
omm ‘ o mm We wanted to provide you with some additional information about the service disruption that occurred in the Northern Virginia (US-EAST-1) Region on November 25th, 2020.
The leader is down!
Amazon Kinesis enables real-time processing of streaming data. In addition to its direct use by customers, Kinesis is used by several other AWS services. These services also saw impact
X during the event. The trigger, though not root cause, for the event was a relatively small addition of capacity that began to be added to the service at 2:44 AM PST, finishing at 3:47 AM
: PST. Kinesis has a large number of “back-end"” cell-clusters that process streams. These are the workhorses in Kinesis, providing distribution, access, and scalability for stream processing.
X e O o Streams are spread across the back-end through a sharding mechanism owned by a “front-end" fleet of servers. A back-end cluster owns many shards and provides a consistent scaling
X M ‘ unit and fault-isolation. The front-end's job is small but important. It handles authentication, throttling, and request-routing to the correct stream-shards on the back-end clusters.
: 1 Tha camacidis addidicam wime halina maada ba bha fennmd mnmd fland Cach ;caviinv i dlhaa frennmd and fland maalndaiine a cacha af lnfavimmatine lnalidins mmamahacelhin dadaile cand clhavd Avmacelin £
AY —_——
Y —_—
B, > =1 .
o mm 8

Outline & Objectives

[)

Why distribute? Evolution of
architectures

Scalability

Performance

Availability

Fault-tolerance

?

How to replicate
data?

N

Trade-offs

Evolution of distributed applications — Monolithic architectures

= Early days of internet, monolith applications: software is developed as a single unit
= Components are interdependent in the code level

= Centralized server architecture: multiple clients share the same server

Suitable for small teams, small projects, start-ups
Simpler development and deployment

Up A

A, .
o~ Not fault tolerant
o€ . . . :
V Utlogic - Single point of failure
Application logic

DB layer Not scalable
- Increasing number of client requests?

-

I

e

- Increasing complexity of the application?

.

Evolution of distributed applications — Monolithic architectures

= Scale up - Vertical scaling: Increase CPU power, memory & disk space

Yy, * Not fault tolerant

@ ay, . . .
%o, - Single point of failure
2
oo P * Limits to scalability

o Woe :
/A\pplililalcioogflogic - The computational capacity, limited by the CPUs
DB layer - The storage capacity, including the transfer rate between

CPUs and disks
- The network between the user and the service

. %

Evolution of distributed applications — Monolithic architectures

= Scale out - Horizontal scaling: Add more servers, introduce parallelism

L
— - Fault tolerant (by replication)

- Scalable?
V' Increasing number of client requests?

. - Increasing complexity of the application?
B D

Scaling LinkedIn — LEO Monolith

= Started as a monolith in 2003

= A system for querying membership using graph traversals: Member Graph

= Read-only replicas for scalability

=)

LEO

LinkedIn’s first service:

RPC Member
Graph

Evolution of distributed systems — Service-oriented architectures (SOA)

= |n the early 2000s, SOA emerged as a paradigm for distributed applications
= Decompose the application into services, split responsibility
= Design to share resources across services
= Design interoperable components which communicate by a common API (e.g. SOAP)

Video Streaming Application A SOA service:
- S = |Logically represents a business activity with a
" Video O specified outcome
g —_— streafning _
. seryer = |s self-contained
Comment{ng I /Payment
N .
sever s o0 sener = |s a black-box for its consumers
Analytics

server

Evolution of distributed systems — Service-oriented architectures (SOA)

= |n the early 2000s, SOA emerged as a paradigm for distributed applications
= Decompose the application into services, split responsibility
= Design to share resources across services
= Design interoperable components which communicate by a common API (e.g. SOAP)

Video Streaming Application e Scalable
- N V' Increasing number of client requests?
+" Video N V' Increasing application complexity?
- — streafning
2 seryer V' Increasing administration complexity?
Comment{ng I /Payment
server S L 27 server * Fault-tolerant
S 7
* Reusable
Analytics
server ° Modular

Evolution of distributed systems — Service-oriented architectures (SOA)

= Transition from human-oriented interaction to machine-machine interaction

= Challenge: How to communicate the services?
= Enterprise service bus (ESB) - an additional messaging layer removing point-to-point messaging

"E{\v"} ‘.v(‘l!?
71 ;/v' 4
e 0 hirid ‘i.‘k‘ \&4’7

opel =2
\‘\vti 4\“'»::,1

_ ‘J‘V

‘L‘/ﬁm ' “..;\\;f

%

https://dzone.com/articles/apache-kafka-vs-integration-middleware-mg-etl-esb

Message Brokers

= Architectural pattern for application-level message validation, transformation, and routing
= Decouples producers and consumers

= Asynchronous communication & processing

Fair dispatch:
—~—— . * Send messages to available consumers
- « Better distribute workload
=E Sgrt\'/fi'ccjt'on Publish/subscribe:
work queue * Deliver one message to multiple consumers

* More common in microservices

. %

Scaling Linkedln — Service-oriented architecture

As the site began to get more traffic LEO started going down in production

Difficult to troubleshoot, recover, release new code

“Kill Leo monolith” and break it up into small services

Browser [App

Frontend Frontend Backend
service service Service
RPC Member \
LEO Graph \
publisher-subscriber
Kafka .
messaging platform
RO R Updates
"'\) 4
T | =
Databus Service Service
relay |
DWH Oracle Monitoring Analytics Hadoop

Hadoop

Backend Data
Service
@ @

.

https://engineering.linkedin.com/architecture/brief-history-scaling-linkedin

Evolution of distributed systems — Microservice architectures

= Build an application as a collection of loosely-coupled microservices
= Design to make each functionality separate as a service and a self-contained

= Microservices are the resulting standalone services after breaking a software application down into
separate components that perform their functions

Monolithic vs. SOA vs. Microservices

Single Unit Coarse-grained Fine-grained

) e b
JANAGEMENT
Microservice Architecture of Uber
19

Service-oriented archirecture vs Microservice architecture

SOA

Follows “share-as-much-as-possible” architecture approach
Importance is on business functionality reuse

They have common governance and standards

Uses Enterprise Service bus (ESB) for communication

They support multiple message protocols
Multi-threaded with more overheads to handle I/0

Maximizes application service reusability
Traditional Relational Databases are more often used

A systematic change requires modifying the monolith

DevOps / Continuous Delivery is becoming popular, but not yet
mainstream

MSA

Follows “share-as-little-as-possible” architecture approach
Importance is on the concept of “bounded context”

They focus on people, collaboration and freedom of other options
Simple messaging system

They use lightweight protocols such as HTTP/REST etc.

Single-threaded usually with the use of Event Loop features for non-
locking 1/0 handling

Focuses on decoupling
Modern Databases are more often used

A systematic change is to create a new service

Strong focus on DevOps / Continuous Delivery

20

Evolution of distributed systems — Microservice architectures

= Microservices are an architectural approach to creating cloud applications

= Microservices in the cloud: Software-as-a-service
= Hosted on a remote server, accessible over the internet
= Users are not responsible for hardware or software updates

‘ e Scalable
: Video - * Fault-tolerant
decoding
Notifications per format ¢ Available

. Video
- e
— encoding
ikes per format . Paypal

payment
Comments Credit card

payment
Comment
analytics Payment

analytics
Video

analytics

Cloud services and applications

o=

SaaS
PaaS

laaS

0y m%a i;L; 0N

Hosted applications/apps

Development tools, Operating systems Servers and storage Networking
database management, firewalls/security
business analytics

Data center physical
plant/building

< Less effort to manage More levels of control =2

Image from: https://azure.microsoft.com

Modern systems move towards more decentralization

Java
XSL
Layered
Horizontal Scale
Some APls

Perl/C++

" Inline HTML

T - Monolithic
Vertical Scale
Walled Garden

1995

1999

2001
2005
2009

LinkedIn's operational setup as of 2015

“If you go back to 2001, the Amazon.com retail website

was a large architectural monolith”
Rob Brigham, Amazon AWS senior manager

Current structure of microservices at Amazon

But still... One approach does not fit all.

. %

Cloud services and applications

) Office365 %« Acavia G Suite
wslack = &® ©sucaRr

CLOUD FUNCTIONS %fn
I[U O S <

) 1 §6°‘I: Azure ORACLE

@ |=' COUChBan @ DATA CLOUD
. DynamoDB

Cloud Datastore cassandra _6‘ COCkroaCh DB

am Microsoft soesforce T LD opsusmn. o ATATASS
. Azure qn‘\

O PaaS Suite . App Engine CLOUD FOUNDRY

& D7ADARA Taam|S3 o ,, Q

OneDrive L ICIOUd
o 3 Drophox) cozy.io

ownCloud

amazon ——
amaznEC2 () rackspace. SOFTLAY=R
Google the #1 managed cloud company
@ Compute «: openstack.
Engine rlarideda _[I ’

apachejwﬂz“zn idstack

Image from: imelgrat.me

As software developers,
we should know
what guarantees / choices
are provided in the services

we build our applications on.

.

https://imelgrat.me/wp-content/uploads/2018/06/Cloud-Delivery-Models.png

Outline & Objectives

Why distribute?

£)

Scalability
Performance
Availability

Fault-tolerance

?

Evolution of How to replicate
architectures data?

From centralized to
decentralized

= Monolithic server
= Service oriented
= Microservices

(Cloud-based services)

N

Trade-offs

Why replicate data?

Size scalability

Geographical scalability
Availability

Fault tolerance

What are the cons/challenges?

= Costly
= Computational resources
= CAP impossibility
= Mainly between availability and consistency

How to replicate data?

= Replication of stateless components or
read-only data?

= Replication of stateful components or
mutable data?

= Single-leader
= Multi-leader
= |eaderless

27

Leader-based replication

= One of the replicas is the leader (or primary copy), the others as followers (or secondary copies)
= Write queries are only accepted on the leader, and sent to followers

= Clients can submit read queries to the leader or any of the followers

Q

D
upload video How to do the replication to followers?

v * Synchronously?

~ :[% N * Asynchronously?

Followers 7 : : \\;\\\\\\\\\

Leader

Leader-based replication - Synchronous

= The leader waits until the followers receive the update and before reporting success

v' A follower is has up-to-date copy

v If the leader fails, data is still available on the follower
- Writes are blocked if a follower is not available

Leader

Followers —

(e

v

impractical for all
followers to be
synchronous

.

Leader-based replication - Asynchronous

= The leader reports success and asynchronously updates the followers
v Writes are not blocked in case of inaccessible follower
- Afollower is not guaranteed to have an up-to-date copy of the data
- Writes are not guaranteed to be durable in case of leader failure

o} 0

= Compromise between two models:

v4 OK Semi-synchronous:

B % %& Some followers are updated

synchronously some are

: : \l\A updated asynchronously
Followers —) ’ \\\\\\\\\\\\‘
. %

Leader

Leader-based replication — Failure Scenarios

= How to set up a new follower?

= How to handle component failures?
= Follower failure: Catch-up recovery
= Leader failure: Failover

Leader % 4 & x

Leader @

Followers — : : \\

Leader-based replication — Asynchronous

= Asynchronous followers may not have up-to-date data

= Possible to observe anomalous behaviors o, v e seal
the video?

& upload video

Which video?

F E% s .

Followers — \
- ! 1

& get video & get video

Multi-leader replication — Conflicting updates

= Multiple leader nodes to accept writes

= Replication to followers in a similar way to single-leader case

LOX

write (name, X)

Leader ; Conflict
= resolution
Followers { \ \ \
% Conflict resolution

decides on the final
& write (name, Y) value of “name”

Leader { / Conflict
< resolution

Followers { [t%
. /f

Multi-leader replication — Ordering problems

= Writes may arrive in the wrong order to some replicas

write (post1, “I write (post2,
think Billy is “False alarm! Billy is
&‘ missing”) g out to play”)

¥ 4

Leader 1

Leader 3

Leader 2 % wrong order of updates at Leader 2

& t write (post3,
“What a relief!”)

.

Leaderless Replication — Asynchronous reads/writes

= No leader —any replica can directly accept writes from clients

= Asynchronous replication can cause:

Conflicting concurrent updates Ordering problems

& write (name, X) & write (post, X)

% i
M what’s the
Eé final value of

wrong order
of updates at
replica 2

oW W

%(“name”? \ //
& ,
D write (name, Y)

&1

write (comment, Y)

.

Leaderless Replication — Quorum based read/writes

= Writes are successful if written to W replicas

= Reads are successful if written to R replicas

Example scenario with N=3, W=2, R=2:

je

write (image, X)

OK

OK

oW
/

II)I’ V_ O

& read (image)

W+R>N

We expect to read up-to-date value
W <N

We can process writes if a node is unavailable
R<N

We can process reads if a node is unavailable

N=3,W=2R=2:
We can tolerate one faulty node
N=5W=3,R=3

We can tolerate two faulty nodes

.

Leaderless Replication — Quorum based read/writes

= Even with W + R > N, there are some limitations:
= |n case of concurrent writes and reads, undetermined which value will be read
= |n case of both successful and unsuccessful writes, rollbacks can cause undetermined reads
= Possible to have conflicting concurrent writes
= W writes may end up in different nodes than R reads (edge case)

What guarantees for
& write (image, X)

writing/reading values is

. 7 provided by a system?
X’ v.1
E™. oK
™ “X”, v.1
L\ /i N
IIII’ V.O
& read (image)

.

Outline & Objectives

Why distribute?

£)

Scalability
Performance
Availability

Fault-tolerance

?

Evolution of How to replicate
architectures data?

From centralized to " Leader-based

decentralized « Synchronous
= Monolithic server * Asynchronous
= Service oriented = Multi-leader

= Microservices = Leaderless

(Cloud-based services)

N

Trade-offs

Consistency model (aka semantics)

= A contract between programmer and system: The system specifies the possible results of operations
= What can be possible results of a read operation?
= What are possible write operations? Are concurrent updates allowed?
= How is the last value of an object is determined?

= E.g. Consistency notions from concurrent programming
= What are the possible values to be printed by the following multithreaded program?

int a =b = 0 Sequential consistent memory: 01, 10, 11
Thread-1 Thread-2 Weakly consistent memory: 01, 10, 11, 00
a =1 b=1

print (b) print (a)

. %

Consistency models

stronger weaker
Linearizability ~ Sequential Consistency many more models Causal Consistency Eventual Consistency

of weak consistency

Linearizability

= There exist a total ordering of operations - the same total order at each replica

= The total order preserves real-time ordering

= |linearizable = Not linearizable
OWrite (name, “A”) Owrite (name, “A”)
e e

write (name, “B”) write (name, “B”
fol S e B

read (name, “A”) ead (name, “B”) read (name, “B”) ead (name, “A”)
fof ol o d

read (name, “A”) ead (name, “B”) read (name, “B”) ead (name, “A”)
ol ol ol d

.

Sequential consistency

= There exist a total ordering of operations - the same total order at each replica

= Sequentially consistent = Not sequentially consistent

OWrite (name, “A”)

Eé@

OWrite (name, “A”)

Eé S
] write (name, “B”) i write (name, “B”)
= 2 - fo
read (name, “B”) ead (name, “A”) read (name, “B”) ead (name, “A”)
% ol fol @ ol ol

read (name, “B”) ead (name, “A”)
LN joi

read (name, “A” ead (name, “B”
p [é Qf () g ()
\g —

.y

Causal consistency

= Causally related operations are delivered to other replicas in the correct order

(Operations are partially-ordered)

Disallowed by causal consistency:

write (post2,
“False alarm! Billy
is out to play”)

write (post1,
“I think Billy

E & is missing”)

N\

write (post3,
“What a relief!”)

Scenario using causal consistency:

write (post1, write (post2,
“I think Billy “False alarm! Billy
@ L is missing”) is out to play”)

write (post3,
“What a relief!”)

.y

Are the executions causally consistent?

= Causally consistent = Not causally consistent

Owrite (name, “A”) @ OWrite (name, “A”)
[D

Le

Owrite (name, uBn) gead (name’ ”A”) Owrite (name' uB”)
[i

L8

-
-

-

read (name, “A”) ead (name, “B”) read (name, “B”) ead (name, “A”)
ol ol ol d

Le

read (name, “B”) ead (name, “A”) read (name, “A”) ead (name, “B”)
o ol ol ol

[E

.

Causal consistency

= Causally related operations are delivered to other replicas in the correct order

= Concurrent writes may be seen in a different order on different replicas

“Picnic” was delivered
write (post1,
“Let’s go to
L movies”)

u
N Movies”was delvret
4

before “picnic”

before “movies”

jo} write (post'l, 'Let s
go to a picnic”)

45

Causal consistency

= (Potentially) causally related transactions are delivered to other replicas in the correct order
= Concurrent writes may be seen in a different order on different replicas
= Allows concurrent conflicting writes

—~—

what’s the \\< list: {apple, milk}
% final value of % -

& “name”? E% % list: {apple, milk}
: - Q

Q

S write (name, Y) c> addTolist (milk)

£ write (name, X) O addTolist (apple) list: {apple, milk}
e =

Some systems use “conflict-free” data types
e.g., Conflict-free replicated data types (CRDTs), or cloud types

. %

= Causal+ consistency: Replicas eventually converge

Eventual consistency

= All updates are eventually delivered to all replicas

= All replicas reach a consistent state if no more user updates arrive

Examples:
= Search engines
™) < = Search results are not always consistent with
W the current state of the web
- = Cloud file systems
= File contents may be out-of-sync with their

@ latest versions

= Social media applications
= Number of likes for a video

.

Implementing linearizable systems

= |llusion of a single copy of the data and all operations on it are atomic
Single-leader replication (potentially linearizable)

Multi-leader replication (not linearizable)

Leaderless replication (not linearizable)

Some consensus algorithms provide linearizable executions

= |tis costly to implement linearizability
= High read and write latencies

Recap: Replication, availability, consistency, partition tolerance

Client Client Client
write') read write Q 7 read write (read

Replicated Storage High Availability
Client Client Client
1. write (\ 3.read 1. write (\ 2.read write(ﬁ read
2. write 3. write = .
- - Partition = Inconsistency
Strong Consistency Weak Consistency

CAP Theorem

Impossible to get all three of:

= (Strong) Consistency — All nodes in the network
have the same (most recent) value.

= Availability — Every request to a non-failing
replica receives a response

= Partition tolerance — The network continues to
operate in the existence of component or
network faults

CAP Theorem

Impossible to get all three of:

= (Strong) Consistency — All nodes in the network
have the same (most recent) value.

= Availability — Every request to a non-failing
replica receives a response

= Partition tolerance — The network continues to
operate in the existence of component or
network faults

The trade-off is not
Availability vs Consistency
but
Availability vs Strong Consistency

Not replicated

Not consistent

Not available

Systems’ CAP choices

=
Q

,z;boo 20y
Ny “e%
MongoDB %/ \\

Redis

Relational
DBMS

e.g. MongoDB
leader based replication

Partition
tolerance

Availability

CouchDB
Cassandra
DynamoDB
Riak

Cassandra provides
tunable quorum reads/writes 5o

“Well, we'll be using some existing systems/services when building our
applications. Do we need to know internal design choices of these systems?”

<%* What are the distributed components in the system?

1 What information do the components exchange with each other?

“+ How do the system components communicate with each other (e.g., synchronously or asynchronously)?
» What kind of faults does the system tolerate? How does it handle failing components?

&b What are the trade-offs of the distributed design (consistency, availability, partition-tolerance)?

. %

Outline & Objectives

[)

Why distribute? Evolution of

architectures

= Scalability From centralized to
decentralized
= Performance
= Monolithic server
= Availability

= Service oriented

Fault-tolerance _ .
= Microservices

(Cloud-based services)

?

How to replicate
data?

= Leader-based
* Synchronous
e Asynchronous

= Multi-leader

= | eaderless

N

Trade-offs

CAP Impossibility:
= (Strong) Consistency
= Availability

= Partitioning

