IN4315 Software Architecture
Lecture 4:
Architecting for Change

Arie van Deursen

Application Programming Interfaces

e APIs are not found in all
architectures:

* APIs can be found in
architectures that are
designed to be

e open and stable platforms

e supporting externally
developed components and
applications.

|

Application

Component

Software
Architecture

ch.6

- API

API Design Principles

 Easy to understand
* Usability
e Simplicity
* Small interfaces

* Quality of Service:
* Scalability, Reliable, Available

e Compliance with standards
* RESTful

* Licensing

' Your Answers!

* Naming consistency (end points,
parameters, methods)

* Robust against untrusted clients
* Security
* Authentication

* Defensive API
* Meaningful error messages
* Compatibility

Software
Architecture

API Design Principles ch6

* Explicit interfaces principle * Maximize information hiding

* Principle of least surprise * 90% immediate use; 9% with

* Small interfaces principle effort; .9% misuse

« Uniform access principle Balance usability and reusability

* Few interfaces principle * Balance performance and

, o reusability
* Clear interfaces principle

* Design from client’s perspective

Application

b, =

Componerit

API

Design Advice

e Keep it simple
e Do One Thing and do it well
e Do not surprise clients

» Keep it as small as possible but not smaller
 When in doubt leave it out
e You can always add more later

e Maximize information hiding
e API First

Software
Architecture

Ch. 6

How to Design a Good
APl and Why it Matters

Joshua Bloch
Principal Software Engineer

GOugle e ‘J

http://www.cs.bc.edu/~muller/teaching/cs102/s06/lib/pdf/api-design

* Avoid leakage: implementation should not impact interface

Software
Architecture

Design Advice

Ch'6
« Names Matter * Internally Consistent
e Avoid cryptic acronyms « Naming Conventions
e Use names consistently e Argument Ordering

e Return values

)
o
w
=

e Error Handling

e Externally Consistent
e Imitate similar APIs

* Follow the conventions of the underlying platform

R,

https://www.youtube.com/watch?v=aAb7hSCtvGw

Software
Architecture

Design Advice chig

 Document Everything

* Classes, Methods, Parameters Joshua Bloch ...
« Include Correct Usage Examples s
e Quality of Documentation critical for success Effective java

Third Edition
* Make it easy to learn and easy to use 2
» without having to read too much documentation

* by copying examples

e Make it hard to misuse

APl Reflection

* Consider an application you know well
* Which public APIs does it expose?
* Does the API realize a clear, compelling function?

* Which of the principles discussed does it adhere to explicitly?
* Which ones does it violate?

* |s the design rationale behind the APl documented?

Essay 2: The System’s Architecture

. The main architectural style or patterns applied (if relevant), such as layering or model-view-controller
architectures.

2. Containers view: The main execution environments, if applicable, as used to deploy the system.

. Components view: Structural decomposition into components with explicit interfaces, and their inter-
dependencies

. Connectors view: Main types of connectors used between components / containers.

. Development view, covering the system decomposition and the main modules and their dependencies, as
embodied in the source code.

. Run time view, indicating how components interact at run time to realize key scenarios, including typical run
time dependencies

. How the architecture realizes key quality attributes, and how potential trade-offs between them have been
resolved.

. APl design principles applied

ystem (\EEE):

The Architecture of aS

« The set of fundamenta\ concepts Of propert'\es

« of the system in its env'\ronment,

. embodied I its elements and relationships,

gn and evolution.

. and the pr'mc'\p\es of its desi

Software Evolution

e Evolution is what makes software valuable

 Software success generates ideas for new system usage
* Business opportunities
* Integration with other systems
* Legal constraints

* But ... lots of evolution may erode the system

Architectural Degradation

|deal Case

» |ldeal Case (P = D)

» D always a perfect
realization of P

il o

Realistic Case

« Not all P decisions can

be implemented

« Overtime, Pand D

change independently
and drift apart

Quality Assurance

* Collection of processes put in place to ensure that system continues
to meet pre-set quality objectives

» Safety critical / business critical domains often highly regulated
* Health, (self-) driving, aviation, finance, ...

* In other domains / open source this can be more ad hoc

* Evolution speed / rate of change can be key driver
* Need to ensure that evolution itself does not reduce (later) rate of change

Architecting for High Rates of Change

* Automate everything

* Clean code

* Coding standards

e Static analysis tools

* Code review

 Architectural integrity

 Continuous integration / delivery / deployment
 Software testing

Testing Activities (I)

* Testability as explicit quality attribute
* Testing as the guide that helps to reach a good design

* Test culture (what people actually do):
* Are tests part of the discussion in pull requests?

* Do pull requests typically come with test cases?
* What is the test code / production code ratio?

* Test coverage:
* What types of coverage are monitored?

* What is the coverage of key components?
* How is test coverage information used?

Testing Activities (I1)

* The test harness:
« Common (mock, stub) objects that ease testing
* Example test cases that can be easily adjusted
* Reuse of test code among test cases

* The setup of the test suites:
 Test cases run on every commit (duration?)
 Tailored test cases for performance, portability?

* Coding standards / style of the test code
e Structuring into packages

Pull Request / Issue Ethnography

* [ssues (or PRs) that involve many people
* Likely to have substantial architectural consequences
e Will uncover key designs
* May reveal their rationale

* A good architecture should help guide such discussions

Hotspot Components / Centers of Evolution

* Hotspot components: involved in many code changes.

* Hotspot may be consequence of poor design
* Monolithic class that no one dares to break up

* Hotspots of the past:
* Likely to have suffered from too many changes

* Hotspots of the future:

* Worth investing in their quality NOW!
* Map future use cases from roadmap onto logical view

What Is Technical Debt?

* Ward Cunningham:

* “l coined the debt metaphor to explain
the refactoring that we were doing.”

 Michael Feathers:

* “The refactoring effort needed to add a
feature non invasively”

http://c2.com/cgi/wiki?WardExplainsDebtMetaphor

https://www.youtube.com/watch?v=7hL6g1aTGvo

19

https://www.youtube.com/watch?v=7hL6g1aTGvo
http://c2.com/cgi/wiki?WardExplainsDebtMetaphor

Any software system has
a certain amount of

essential complexity

Cruft causes changes
required to do its job...

to take more effort

4 4 A
4o

... but most systems

contain cruft that makes it
harder to understand.

The technical debt metaphor treats the
cruft as a debt, whose interest payments
are the extra effort these changes require.

https://martinfowler.com/bliki/TechnicalDebt.html

| | be \
Technical Debt vs Code Quality SonAQUde

ym» JArchitect

* Several static analysis tools to detect

http://www.sqale.org/
e Code smells

* Maintainability issues -
* Vulnerabilities
-l

 Very useful code analysis tools

 Substantial insight in code (structure) / quality

* Somewhat narrow interpretation of technical debt. E.g. SonarQube:
“Estimated time required to fix all maintainability issues / code smells”

http://www.sqale.org/

A lot of bloggers at least
have explained the debt metaphor and confused it, | think,
with the idea that you could write code poorly
with the intention of doing a good job later
and thinking that that was the primary source of debt.

I'm never in favor of writing code poorly.

| am in favor of writing code to reflect
your current understanding of a problem
even if that understanding is partial

http://c2.com/cgi/wiki?WardExplainsDebtMetaphor

22

hnical. It1s in the do-

plications is not tec
complexity is not

complexity of many ap
user. When this domain

the most significant
business of the

activity Or
itwon't matter that the infr

must systema

main itself, the

ically deal with this central

The refactorings that have the greatest impact on the viability of the system
are those motivated by new insights into the domain
or those that clarify the model’s expression through the code.

This type of refactoring does not in any way replace
the refactorings to design patterns or the micro-refactorings,
which should proceed continuously.

DI

Tackling Complexity

It superimposes another level: refactoring to a deeper model.

Executing a refactoring based on domain insight often involves
a series of micro-refactorings, but the motivation is not just the state of the code.
Rather, the micro-refactorings provide convenient units of change
toward a more insightful model.

The goal is that not only can a developer understand what the code does;
they can also understand why it does what it does
and can relate that to the ongoing communication with the domain experts

Foreword by Martin Fowler

Visible Invisible

VSRRV 250 Architectural,
Added Structural
Value (a1 features

Positive

Negative Technical
Value Debt

Kruchten, 2013:
The (missing) value of software architecture

Measure It? Manage It? Ignore It?
Software Practitioners and
Technical Debt

Measure I1t? Manage It? Ignore It?
Software Practitioners and Technical Debt

Neil A. Ernst, Stephany Bellomo, Ipek Ozkaya, Robert L. Nord, and lan Gorton”
Carnegie Mellon University Software Engineering Institute
Pittsburgh, PA, USA
{nernst,sbellomo,ozkaya,rn,igorton}@sei.cmu.edu

ABSTRACT

The technical debt metaphor is widely used to encapsulate
quality bl The is at-

tractive to practiti as it to both techni-

cal and nontechnical audiences that if quality problems are

nat.add i_things m. worse. However, it is unclear
lat move this metaphor beyond
nism. Existing studies of tech-
: : d d tri d small
Architecture Choice E;__:;:"f ;';;;ﬁ,‘;‘,':mf';‘m‘;
Awareness I L, software ckensive projecs
. s, and follow-up interviews of
Time Pressure N analyzed our data using both
qualitative text analysis. We
Interest I ons are e ot impertan
Irthermore, while respondents
i important for communication,
equirements Shortfa
y helpful in managing the de-
i i otivate a technical debt time-
Legacy Modemization | A,
Code Problems I i
Descriptors
Defects _ nt]: Management-software de-
Inadequate Testing |INEEG_—_—_—_—_—_——
Rework urvey
Process .
r concisely describes a univer-
Measurement _ gineers face when developing
. lar-term value with long-term
Lack of Documentation - co techical det i made vie
ly, their managers) can begin
COSt Pressure _ er éﬂd [:é’urmation Science,
P rton@neu.edu
Limited Knowledge [N
Tools NN L chps o e o St
None M [permitied. To copy otherwise, o republish
s pri speciic permission andlora
0% 10% 20% 30% 40% 50% 60% 70% 80% .?%zézgllg,&ugam, Ttaly
Rip/ax dor org/ 0. 114572786805 2786848

Ernst et al, ESEC/FSE 2015

to understand in what ways debt can be harmful or ben-
eficial to a project. Debt accumulates and causes ongoing
costs (“interest”) to system quality in maintenance and evo-
lution. Debt can be taken on deliberately, then monitored
and managed (“principal repaid”), to achieve business value.

The usefulness of this concept prompted the software engi-
neering h ity, software 1 and tool
vendors alike to pay more attention to understanding what
constitutes technical debt and how to measure, manage, and
communicate technical debt. Recent systematic literature
reviews [19, 33] report that

hni d d

e using code quality 1 to
technical debt has been the dominant focus in research
and by tool vendors.

e beyond code quality, other work explores the suitabil-
ity of the metaphor in other phases of the software
life cycle: for example, “requirements debt,” “testing
debt,” “code debt,” and “design debt.”

Practitioners currently use the term technical debt to mean,
broadly, a “shortcut for expediency” [23] and, more specif-
ically, bad code or inadequate refactoring [15]. Shull et al.
[29], in a review paper on research in technical debt, high-

light that technical debt is a multi-faceted probl Ad-
dressing it effectively in practice requires research in soft-
ware evolution, risk litati of

context, software metrics, program analysis, and software
quality. Applying technical debt research starts with identi-
fying a project’s sources of “pain.” In order to give guidance
to a specific project, research in this area must be grounded
in the project’s context.

This ibi of diverse definitions of technical debt in
research, alongside the need to ground research on technical
debt in tice, raised three h i

-

. To what extent do practitioners have a commonly shared
definition of technical debt?

»

How much of technical debt is architectural in nature?

Ld

‘What management practices and tools are used in in-
dustry to deal with debt?

To i ig: these i we d d a two-part
study. First, we admini d a survey of profes-
sionals in three large with 1,831

second, we held semistructured, follow-up interviews with
seven d all professional i to fur-
ther investigate the emerging themes.

RQ2. Are issues with architectural elements among the
most significant sources of technical debt?
Finding 3: Architectural issues are the greatest source of

technical debt.
Finding 4: Architectural issues are difficult to deal with,

since they were often caused many years previously.
Finding 5: Monitoring and tracking drift from original de-
sign and rationale are vital.

Beware: Debt is Relative

* The refactoring effort needed to resolve issue non invasively
* Debt depends on features and issues to solve
* Debt relevance depends on system’s roadmap

 Systems are used and society progresses
* New libraries and versions come available, may make code obsolete

* Actual usage affects our understanding of what matters

* Debt quantifications are only useful when they lead to action.
* Rants / complaints that all code is bad are not helpful;
* Propose rational action instead.

Essay 3: Quality and Evolution

With key aspects of the architecture described, the third essay focuses on means to safeguard the quality and
architectural integrity of the underlying system, with special empahsis on the rate of change. Aspects to take into
account include:

. The overall software quality processes that apply to your system

. The key elements of the system’s continuous integration processes

. The rigor of the test processes and the role of test coverage

. Hotspot components from the past (previously changed a lot) and the future (needed for roadmap)
. The code quality, with a focus on hotspot components

oo O b WN -

. The quality culture, as evidenced in actual discussions and tests taking place in architecturally significant
feature and pull requests (identify and analyze at least 10 such issues and 10 such pull requests)
7. An assessment of technical debt present in the system.

Essay 4

 4,.SUS: Sustainability Analysis (lecture Luis Cruz)

 4.DIS: Distribution Analysis (Lecture Burcu Kulahcioglu Ozkan)

* 4 VAR: Variability Analysis (Lecture Xavier Devroey)

e 4, AMD: Get an ARCHITECTURE.md file merged (HT Aleksey Kladov)
* 4.0TH: Topic of choice

Arie van Deursen @avandeursen - Dec 17, 2019
Jeff Bezos on the importance and difficulty of clear writing:

“We don't do PowerPoint (or any other slide-oriented) presentations at
Amazon. Instead, we write narratively structured six-page memos. We
silently read one at the beginning of each meeting.”

sec.gov/Archives/edgar...

Q 2 0 4 O 13 T 1]

ama;on https://www.sec.gov/Archives/edgar/data/1018724/000119312518121161/d456916dex991.htm s>

“Not surprisingly, the quality of these memos varies widely. Some have
the clarity of angels singing. They are brilliant and thoughtful and set up
the meeting for high-quality discussion. Sometimes they come in at the

other end of the spectrum.”

“The great memos are written and re-written, shared with colleagues who
are asked to improve the work, set aside for a couple of days, and then
edited again with a fresh mind. They simply can't be done in a day or

two.”

33

“Surely to write a world class memo, you have to be an extremely skilled
writer? [...] Even in the example of writing a six-page memo, that's
teamwork. Someone on the team needs to have the skill, but it doesn't
have to be you."”

~

“ https://100x.engineering/the-power-of-the-narrative/

34

The Science of Scientific Writing

e Stress position: 1. The backward-linking old
* The end of a sentence information appears in the
« Save the best for the last topic position.
* The topic position: 2. The person, thing or concept
* The start of the sentence whose story it is appears in the
 Gives meaning to what will come topic position.
* Builds on /is connected to 3. The new, emphasis-worthy
preceding arguments information appears in the
 Connect sentences, paragraphs, stress position.

chapters like this

Four Roles in the Writing Process

« Madman: Full of ideas, writes crazily and perhaps rather sloppily, gets carried
away by enthusiasm or anger, and if really let loose, could turn out ten pages an
hour.

* Architect: Select large chunks of material and arrange them in a pattern that
might form an argument. The thinking is large, organizational, paragraph-level ---
the architect doesn't worry about sentence structure.

e Carpenter: Nails these ideas together in a logical sequence, making sure each
sentence is clearly written, contributes to the argument of the paragraph, and
leads logically and gracefully to the next sentence.

* Judge: Punctuation, spelling, grammar, tone --- all the details which resultin a
polished essay

http://www.ut-ie.com/b/b_flowers.html

https://www.glamour.com/gallery/books-international-day-of-the-girl

"Crisp, clear writing is essential to communicating
on behalf of oneself and one’s causes.

Vague expressions, euphemisms, and jargon are often manifestations of not
being entirely sure of one’s point or purpose, and they hold us back.

In 1946 Orwell was so exasperated by the debasement of language he saw
around him that he wrote a short pamphlet with guidelines for precision.

| reread it every year as a reminder to
'never use a long word when a short one will do’
and to
'let the meaning choose the word, and not the other way around.""

Orwell on Writing

* Never use a long word where a short one will do.
* If it is possible to cut a word out, always cut it out.

* Never use a foreign phrase, a scientific word or a jargon word if you
can think of an everyday English equivalent.

* Never use the passive where you can use the active.

* Never use a metaphor, simile or other figure of speech which you are
used to seeing in print.

* Break any of these rules sooner than say anything barbarous.

Essay Evaluation Criteria

1. The text is well-structured, with a clear goal, a natural breakdown in sections, and a compelling conclusion.

2. Sentences, paragraphs, and sections are coherent. They naturally build upon each other and work towards ¢

0 N OO o b W

clear message.

. The arguments laid out are technically sound, and of adequate technical depth.

. The English writing is grammatically correct

. The text clearly references any sources it builds upon

. The essay is unique and recognizable in its voice and its way of approaching the topic
. The essay is independently readable

. The story-line is illustrated with meaningful and appealing images and infographics.

Essay Peer Review b Peer Review

* Objective 1: Learn from other essay
* Objective 2: Give other team feedback

e Open questions (free text):
* How you understood the essay (the key take-aways)

* Strengths and points for improvement

* Closed questions (Likert scale): Recommandation:

» Specific questions on scale from 1-5 Allocate 4 hours per
review

