
IN4315 Software Architecture
Lecture 4:

Architecting for Change

Arie van Deursen

W
iki

pe
di

a,
 D

om
-In

o
Ho

us
e,

 C
or

bu
sie

r

Application Programming Interfaces

• APIs are not found in all
architectures:
• APIs can be found in

architectures that are
designed to be
• open and stable platforms
• supporting externally

developed components and
applications.

Ch. 6

2

API Design Principles: Your Answers!

• Easy to understand
• Usability
• Simplicity
• Small interfaces

• Quality of Service:
• Scalability, Reliable, Available

• Compliance with standards
• RESTful

• Licensing

• Naming consistency (end points,
parameters, methods)
• Robust against untrusted clients

• Security
• Authentication

• Defensive API
• Meaningful error messages
• Compatibility

API Design Principles

• Explicit interfaces principle
• Principle of least surprise
• Small interfaces principle
• Uniform access principle
• Few interfaces principle
• Clear interfaces principle

• Maximize information hiding
• 90% immediate use; 9% with

effort; .9% misuse
• Balance usability and reusability
• Balance performance and

reusability
• Design from client’s perspective

Ch. 6

4

Ch. 6

http://www.cs.bc.edu/~muller/teaching/cs102/s06/lib/pdf/api-design

5

Ch. 6

https://www.youtube.com/watch?v=aAb7hSCtvGw6

Ch. 6

7

API Reflection

• Consider an application you know well
• Which public APIs does it expose?
• Does the API realize a clear, compelling function?
• Which of the principles discussed does it adhere to explicitly?

• Which ones does it violate?

• Is the design rationale behind the API documented?

8

Essay 2: The System’s Architecture

Essay 2: The System’s Architecture

10

9

Software Evolution

• Evolution is what makes software valuable

• Software success generates ideas for new system usage
• Business opportunities
• Integration with other systems
• Legal constraints

• But ... lots of evolution may erode the system

Ch. 3

Quality Assurance

• Collection of processes put in place to ensure that system continues
to meet pre-set quality objectives

• Safety critical / business critical domains often highly regulated
• Health, (self-) driving, aviation, finance, ...

• In other domains / open source this can be more ad hoc
• Evolution speed / rate of change can be key driver
• Need to ensure that evolution itself does not reduce (later) rate of change

Architecting for High Rates of Change

• Automate everything
• Clean code
• Coding standards
• Static analysis tools
• Code review
• Architectural integrity
• Continuous integration / delivery / deployment
• Software testing

Testing Activities (I)

• Testability as explicit quality attribute
• Testing as the guide that helps to reach a good design
• Test culture (what people actually do):

• Are tests part of the discussion in pull requests?
• Do pull requests typically come with test cases?
• What is the test code / production code ratio?

• Test coverage:
• What types of coverage are monitored?
• What is the coverage of key components?
• How is test coverage information used?

Testing Activities (II)

• The test harness:
• Common (mock, stub) objects that ease testing
• Example test cases that can be easily adjusted
• Reuse of test code among test cases

• The setup of the test suites:
• Test cases run on every commit (duration?)
• Tailored test cases for performance, portability?

• Coding standards / style of the test code
• Structuring into packages

Pull Request / Issue Ethnography

• Issues (or PRs) that involve many people
• Likely to have substantial architectural consequences
• Will uncover key designs
• May reveal their rationale

• A good architecture should help guide such discussions

Hotspot Components / Centers of Evolution

• Hotspot components: involved in many code changes.
• Hotspot may be consequence of poor design

• Monolithic class that no one dares to break up
• Hotspots of the past:

• Likely to have suffered from too many changes
• Hotspots of the future:

• Worth investing in their quality NOW!
• Map future use cases from roadmap onto logical view

What Is Technical Debt?

• Ward Cunningham:
• “I coined the debt metaphor to explain

the refactoring that we were doing.”

• Michael Feathers:
• “The refactoring effort needed to add a

feature non invasively”

19

https://www.youtube.com/watch?v=7hL6g1aTGvo

http://c2.com/cgi/wiki?WardExplainsDebtMetaphor

https://www.youtube.com/watch?v=7hL6g1aTGvo
http://c2.com/cgi/wiki?WardExplainsDebtMetaphor

https://martinfowler.com/bliki/TechnicalDebt.html

Technical Debt vs Code Quality

• Several static analysis tools to detect
• Code smells
• Maintainability issues
• Vulnerabilities

• Very useful code analysis tools
• Substantial insight in code (structure) / quality
• Somewhat narrow interpretation of technical debt. E.g. SonarQube:

“Estimated time required to fix all maintainability issues / code smells”

http://www.sqale.org/

http://www.sqale.org/

A lot of bloggers at least
have explained the debt metaphor and confused it, I think,

with the idea that you could write code poorly
with the intention of doing a good job later

and thinking that that was the primary source of debt.

I'm never in favor of writing code poorly.

I am in favor of writing code to reflect
your current understanding of a problem

even if that understanding is partial

22
http://c2.com/cgi/wiki?WardExplainsDebtMetaphor

The refactorings that have the greatest impact on the viability of the system
are those motivated by new insights into the domain

or those that clarify the model’s expression through the code.

This type of refactoring does not in any way replace
the refactorings to design patterns or the micro-refactorings,

which should proceed continuously.

It superimposes another level: refactoring to a deeper model.

Executing a refactoring based on domain insight often involves
a series of micro-refactorings, but the motivation is not just the state of the code.

Rather, the micro-refactorings provide convenient units of change
toward a more insightful model.

The goal is that not only can a developer understand what the code does;
they can also understand why it does what it does

and can relate that to the ongoing communication with the domain experts

Kruchten, 2013:
The (missing) value of software architecture

Measure It? Manage It? Ignore It?
Software Practitioners and
Technical Debt

Ernst et al, ESEC/FSE 2015

Beware: Debt is Relative

• The refactoring effort needed to resolve issue non invasively
• Debt depends on features and issues to solve
• Debt relevance depends on system’s roadmap

• Systems are used and society progresses
• New libraries and versions come available, may make code obsolete
• Actual usage affects our understanding of what matters

• Debt quantifications are only useful when they lead to action.
• Rants / complaints that all code is bad are not helpful;
• Propose rational action instead.

28

Essay 4

• 4.SUS: Sustainability Analysis (lecture Luís Cruz)

• 4.DIS: Distribution Analysis (Lecture Burcu Kulahcioglu Ozkan)
• 4.VAR: Variability Analysis (Lecture Xavier Devroey)

• 4.AMD: Get an ARCHITECTURE.md file merged (HT Aleksey Kladov)
• 4.OTH: Topic of choice

32https://www.sec.gov/Archives/edgar/data/1018724/000119312518121161/d456916dex991.htm

33

34https://100x.engineering/the-power-of-the-narrative/

The Science of Scientific Writing

• Stress position:
• The end of a sentence
• Save the best for the last

• The topic position:
• The start of the sentence
• Gives meaning to what will come
• Builds on / is connected to

preceding arguments

• Connect sentences, paragraphs,
chapters like this

1. The backward-linking old
information appears in the
topic position.

2. The person, thing or concept
whose story it is appears in the
topic position.

3. The new, emphasis-worthy
information appears in the
stress position.

Four Roles in the Writing Process

• Madman: Full of ideas, writes crazily and perhaps rather sloppily, gets carried
away by enthusiasm or anger, and if really let loose, could turn out ten pages an
hour.

• Architect: Select large chunks of material and arrange them in a pattern that
might form an argument. The thinking is large, organizational, paragraph-level ---
the architect doesn't worry about sentence structure.

• Carpenter: Nails these ideas together in a logical sequence, making sure each
sentence is clearly written, contributes to the argument of the paragraph, and
leads logically and gracefully to the next sentence.

• Judge: Punctuation, spelling, grammar, tone --- all the details which result in a
polished essay

http://www.ut-ie.com/b/b_flowers.html

"Crisp, clear writing is essential to communicating
on behalf of oneself and one’s causes.

Vague expressions, euphemisms, and jargon are often manifestations of not
being entirely sure of one’s point or purpose, and they hold us back.

In 1946 Orwell was so exasperated by the debasement of language he saw
around him that he wrote a short pamphlet with guidelines for precision.

I reread it every year as a reminder to
'never use a long word when a short one will do’

and to
'let the meaning choose the word, and not the other way around.'"

ht
tp

s:
//

w
w

w
.g

la
m

ou
r.c

om
/g

al
le

ry
/b

oo
ks

-in
te

rn
at

io
na

l-d
ay

-o
f-t

he
-g

irl

Orwell on Writing

• Never use a long word where a short one will do.
• If it is possible to cut a word out, always cut it out.
• Never use a foreign phrase, a scientific word or a jargon word if you

can think of an everyday English equivalent.
• Never use the passive where you can use the active.
• Never use a metaphor, simile or other figure of speech which you are

used to seeing in print.
• Break any of these rules sooner than say anything barbarous.

Essay Evaluation Criteria

Essay Peer Review

• Objective 1: Learn from other essay
• Objective 2: Give other team feedback

• Open questions (free text):
• How you understood the essay (the key take-aways)
• Strengths and points for improvement

• Closed questions (Likert scale):
• Specific questions on scale from 1-5

Recommendation:
Allocate 4 hours per

review

