
Lean Architecture (I)

Arie van Deursen

1

2

3

Projects Picked So Far

• Micronaut-core (micro-service architectures)
• VSCode (building on 2017)
• Openpilot
• ArduPilot
• Ripple

4

5

Engin Bozdag:

• Senior privacy architect at Uber
• Privacy by design in monoliths versus micro-services
• Preparation next lecture:

• Slides of his Usenix/Enigma 2020 presentation
• Uber privacy statements
• Propose questions in #ama channel on MM

6

Assignment

7

8

9

10

11

The System Vision (Essay E1)

• You can only architect a system if you know what it is supposed to
achieve
• What (business) value does / will it generate?
• Which defining properties should the system realize?
• What resources are needed to realize the system?
• What resources are needed to operate the system?
• To what system roadmap does this lead?

As an architect, think of anything that is “architecturally significant”
12

End Users’ Mental Model

System architecture should reflect the end users’ mental model of
their world:

1. System form relates to the user’s thought process when viewing the
screen, and to what the system is

2. System functionality relates what end users do – interacting with
the system – and how the system should respond to user input.

13

14

15

Exploring Form and Function

• To explore both form and function requires up-front engagement of
all stakeholders, and early exploration of their insights.

• Deferring interactions with stakeholders, or deferring decisions
beyond the responsible moment slows progress, raises cost, and
increases frustration.

• A team acts like a team from the start.

16

Stakeholder Engagement

• “Maybe half of software development is about nerd stuff
happening at the whiteboard and about typing at the keyboard.”

• “The other half is about people and relationships. “

• There are few software team activities where this becomes more
obvious than during architecture formulation.

17

[Your Learning Objectives]

18

The Lean Value Stream

• Continuous, end-to-end process, of people delivering value to
end users

• Avoid stress, overtime, cutting corners on the process to meet
deadline

• “Lean production organizes around value streams instead of
production steps”

19

Lean Architecture

• Shorten time between
• understanding user needs
• and delivering a solution

• Maximize likelihood that we will deliver what the customer expects
• Realize cost savings (that can be passed on to the user):

• Reduce distance between end user world model and code structure
• Reduce waste (features not needed, bugs, waiting)
• Avoid rework (re-doing work you could have done once)

• Maintain a consistent vision that helps system parts fit together

20

Stakeholders

• “Many different stakeholders derive value from your product”

• Major stakeholder areas include:
• End users
• The business
• Customers
• Domain experts
• Developers and testers

21

A true software architect is one who
is a domain expert, who knows how
to apply the domain expertise to the

design of a particular system, and
who materially participates in

implementation

22I need you on ... to be able to generate value

I h
el

p
yo

u
by

 ta
ki

ng
 ca

re
 o

f .
..

23I need you on ... to be able to generate value

I h
el

p
yo

u
by

 ta
ki

ng
 ca

re
 o

f .
..

End Users

• What the customer wants or needs?
• What the customer expects!

• Beyond user stories: Elicit an end-user cognitive model
• “Users carry models of the internals of the program they are using “

• Form: (Stable) domain structure
• Function: Domain behavior / use cases

24

Fred Brooks: Conceptual Integrity

• The quality of a system where all the concepts and their relationships
with each other are applied in a consistent way throughout the
system.

• Conceptual Integrity is the most important consideration in system
design.

• It is better to have […] one set of design ideas,
than [...] many good but independent and uncoordinated ideas.

25

The Business

• Funds software development
• Needs return on investment

• Has stake in well-being of its employees
• Management, sales, marketing, ...

• Owns decisions about project scope
• Buy-versus-build decisions

26

Customer

• Middleman paying for the product
• Investor before there are any users

• See the costs, but don’t feel the benefits
• Focus on delivery times and rationalizing the development process

27

Domain Experts

• “Over the years domain experts have integrated the perspectives of
multiple end user communities and other stakeholders into the forms
that underlie the best systems.”
• “Domain expert engagement is to architecture as end user

engagement is to feature development”
• “Innovation in the solution domain goes hand-in-hand with long-term

experience of solution domain experts"

28

Developers and Testers

• Developers are the prime oracles of technical feasibility
• Developers should be active experts:

• Gather empirical data about architectural trade-offs
• genchi genbutsu (����): go look and see for yourself.

• Developers should own the development estimates
• Developers and testers “should be friends”
• Architecture defines your test points
• Usability testing is done before coding begins

29

Conway’s Law

“Organizations which design systems ...
are constrained to produce designs

which are
copies of the communication structures

of these organizations”

Melvin Conway, 1968

30

Socio-
Technical
Congruence

31

A Good Problem Definition (Ch. 4)

• It is written down and shared.
• It is a difference between the current state and some desired state of

the organization or business.
• Its achievement is measurable, usually at some mutually understood

point in time.
• It is short: one or two sentences in clear, simple, natural language.
• It is internally consistent: that is, it does not set up an over-

constrained problem.

32
Jerry Weinberg: Ask yourself: Who owns the problem?

Mapping Between Problems and Solutions

• The relationship between problem and solution is rich and complex.
• You can’t just start with a problem definition and methodically

elaborate it into a solution
• The mapping from problems to solutions is many-to-many
• Multiple seemingly unrelated solutions might be required to solve

what you perceive as a single problem
• Some problems seem to defy any mapping at all

33

34

