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Projects Picked So Far

• Micronaut-core (micro-service architectures)
• VSCode (building on 2017)
• Openpilot
• ArduPilot
• Ripple
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Engin Bozdag: 

• Senior privacy architect at Uber
• Privacy by design in monoliths versus micro-services
• Preparation next lecture:

• Slides of his Usenix/Enigma 2020 presentation
• Uber privacy statements
• Propose questions in #ama channel on MM
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Assignment
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The System Vision (Essay E1)

• You can only architect a system if you know what it is supposed to 
achieve
• What (business) value does / will it generate?
• Which defining properties should the system realize?
• What resources are needed to realize the system?
• What resources are needed to operate the system?
• To what system roadmap does this lead?

As an architect, think of anything that is “architecturally significant”
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End Users’ Mental Model

System architecture should reflect the end users’ mental model of 
their world: 

1. System form relates to the user’s thought process when viewing the 
screen, and to what the system is

2. System functionality  relates what end users do – interacting with 
the system – and how the system should respond to user input. 
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Exploring Form and Function

• To explore both form and function requires up-front engagement of 
all stakeholders, and early exploration of their insights. 

• Deferring interactions with stakeholders, or deferring decisions 
beyond the responsible moment slows progress, raises cost, and 
increases frustration. 

• A team acts like a team from the start. 
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Stakeholder Engagement

• “Maybe half of software development is about nerd stuff 
happening at the whiteboard and about typing at the keyboard.”

• “The other half is about people and relationships. “

• There are few software team activities where this becomes more 
obvious than during architecture formulation. 

17



[ Your Learning Objectives ]
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The Lean Value Stream

• Continuous, end-to-end process, of people delivering value to 
end users

• Avoid stress, overtime, cutting corners on the process to meet 
deadline

• “Lean production organizes around value streams instead of 
production steps”
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Lean Architecture

• Shorten time between 
• understanding user needs 
• and delivering a solution 

• Maximize likelihood that we will deliver what the customer expects 
• Realize cost savings (that can be passed on to the user):

• Reduce distance between end user world model and code structure 
• Reduce waste (features not needed, bugs, waiting)
• Avoid rework (re-doing work you could have done once)

• Maintain a consistent vision that helps system parts fit together
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Stakeholders

• “Many different stakeholders derive value from your product”

• Major stakeholder areas include:
• End users
• The business
• Customers
• Domain experts
• Developers and testers
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A true software architect is one who 
is a domain expert, who knows how 
to apply the domain expertise to the 

design of a particular system, and 
who materially participates in 

implementation
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End Users

• What the customer wants or needs?
• What the customer expects!

• Beyond user stories: Elicit an end-user cognitive model
• “Users carry models of the internals of the program they are using “

• Form: (Stable) domain structure
• Function: Domain behavior / use cases
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Fred Brooks: Conceptual Integrity

• The quality of a system where all the concepts and their relationships 
with each other are applied in a consistent way throughout the 
system.

• Conceptual Integrity is the most important consideration in system 
design. 

• It is better to have […] one set of design ideas,  
than [...] many good but independent and uncoordinated ideas.
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The Business

• Funds software development
• Needs return on investment

• Has stake in well-being of its employees
• Management, sales, marketing, ...

• Owns decisions about project scope
• Buy-versus-build decisions
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Customer

• Middleman paying for the product
• Investor before there are any users

• See the costs, but don’t feel the benefits
• Focus on delivery times and rationalizing the development process
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Domain Experts

• “Over the years domain experts have integrated the perspectives of 
multiple end user communities and other stakeholders into the forms 
that underlie the best systems.”
• “Domain expert engagement is to architecture as end user 

engagement is to feature development”
• “Innovation in the solution domain goes hand-in-hand with long-term 

experience of solution domain experts"
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Developers and Testers

• Developers are the prime oracles of technical feasibility 
• Developers should be active experts:

• Gather empirical data about architectural trade-offs
• genchi genbutsu (����): go look and see for yourself. 

• Developers should own the development estimates 
• Developers and testers “should be friends”
• Architecture defines your test points
• Usability testing is done  before coding begins
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Conway’s Law

“Organizations which design systems ... 
are constrained to produce designs 

which are 
copies of the communication structures 

of these organizations”

Melvin Conway, 1968
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Socio-
Technical 
Congruence
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A Good Problem Definition (Ch. 4)

• It is written down and shared. 
• It is a difference between the current state and some desired state of 

the organization or business. 
• Its achievement is measurable, usually at some mutually understood 

point in time. 
• It is short: one or two sentences in clear, simple, natural language. 
• It is internally consistent: that is, it does not set up an over-

constrained problem. 
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Jerry Weinberg: Ask yourself: Who owns the problem?



Mapping Between Problems and Solutions

• The relationship between problem and solution is rich and complex. 
• You can’t just start with a problem definition and methodically 

elaborate it into a solution 
• The mapping from problems to solutions is many-to-many 
• Multiple seemingly unrelated solutions might be required to solve 

what you perceive as a single problem 
• Some problems seem to defy any mapping at all 
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