Lean Architecture (I)

Arie van Deursen

S Julia Evans O,
@bOrk

IICon is a conference where we take 2 days to celebrate
the joy, excitement, and surprise (!!!) of programming. Our

speakers often:
- explain the basics of an idea!
- show a delightful demo!

- tell a story!

I'd love it if you submitted a talk:

bangbangcon.com/give-a-talk.ht...

What'’s an idea that delights you? Did you learn something surprising
recently? Is there a tool you love that you've been telling everyone about?
Did you do something with computers that seems impossible or amazing
or just really fun? Please take this call for talk* proposals as an invitation
to meditate on what you love about computing, and then submit a talk™
about one of those things!

The only requirements are that your talk*:

¢ be computing-related!
e be about something you think is interesting and cool!
¢ have at least one exclamation mark in the title!

G Casper Boone 12:55 PM A
O Commented on Iguerchi's message: Hi, when are you planning to provide us the github repository to for..

As soon as you've made a group and chosen a project (i.e. your proposal on Brightspace got

approved), we will add you to the repository on GitLab. Note that you don't have to (and actually
cannot | believe @) fork the repo @
(edited)

[, 2

L

S 2 Casper Boone «,

3 hours ago

We added you to the GitLab repository: https:/gitlab.ewi.tudelft.nl/in4315/2019-
2020/deso0sa2020/. Please take a good look at the README to see how
everything's set up. Your project has already been added to the repository. You
can already get started by writing an introduction that introduces the open source

project you chose. Want an example? Take a look at the React Native or Pandas
example projects in the repo.

Projects Picked So Far

* Micronaut-core (micro-service architectures)
* \VSCode (building on 2017)

* Openpilot

* ArduPilot

* Ripple

Date Time
Wed Feb 12 15:45
FriFeb 14 15:45
17:00
Wed Feb 19 15:45

17:00
Fri Feb 21 15:45

Wed Feb 26 15:45

FriFeb28 15:45
Wed Mar4 15:45
Fri Mar 6 15:45

Wed Mar 11 15:45
FriMar 13 15:45
Wed Mar 18 15:45
FriMar20 15:45
Wed Mar 25 15:45
Fri Apr 3

17:00

full day

Activity

Lecture 1

Lecture 2

Lecture 3

Lecture 4

Lecture 5

Lecture 6

Lecture 7

Lecture 8

Lecture 9 Ferd Scheepers, ING

Teacher

Arie van Deursen
Arie van Deursen
Grady Booch, IBM
Arie van Deursen
Engin Bozdag, Uber
Xavier Devroey
Marco Di Biase, SIG
Ayushi Rastogi

Luis Cruz

Bert Wolters, Adyen

Lecture 10 Steffan Norberhuis

Lecture 11 tbd

Lecture 12 Daniel Gebler, Picnic

Lecture 13 tbd

Drinks

All student teams

Everyone

Topic

Course structure (slides)

Lean Architecture |

Ask Me Anything on SATURN 2016 keynote
Lean Architecture Il

Ask Me Anything; privacy by design (slides)
Architecting for Configurability

Architecting for Maintainability

Architecting as a Team Activity
Architecting for Sustainaility

Architecting for Scalability

Architecting for the Enterprise

Architecting for Operations

tbd

Architecting with or wihout Microservices
tbd

Team presentations

Engin Bozdag:

» Senior privacy architect at Uber
* Privacy by design in monoliths versus micro-services

* Preparation next lecture:
* Slides of his Usenix/Enigma 2020 presentation

* Uber privacy statements
* Propose questions in #ama channel on MM

Transparency | Accuracy l?/l?r:iamization Privacy Rights
Purpose Storage Privacy by
Lawfuness | | i yitation Limitation Default

Assignment

1. Selecting an open source system: The system needs to be sufficiently complex, under active
development, and open to external contributions.
2. Writing four essays, covering
1. the product vision, including required capabilities, roadmap, product context, and stakeholder
analysis.
2. architectural decisions made, including system decomposition, tradeoff points, as well as
architectural styles and patterns adopted.

3. quality control and assessment; and

4. a deeper analysis based on the lectures or other relevant material specific to the system of
choice;
3. Contributing changes to the open source system selected (via pull requests submitted on GitHub)
4. Preparing a final poster and presentation

5. Reviewing work from other teams, to learn from them, and to give them feedback

Deadlines

Writing Reviewing

Mon Feb 17 17:00 Teams have selected project

Wed Feb 19 17:00 Top-level decomposition

MonMar9 17:.00 Teamessay 1 - -

Mon Mar 16 17:00 Team essay 2 First pull requests and plan Essay 1
Mon Mar23 17:00 Teamessay 3 - Essay 2
Mon Mar 30 17:00 Team essay 4 Pull request report Essay 3

Mon Apr6 17:00 - - Essay 4, poster

9 Students will receive grades based on the following:

» E: Team performance for each of the four essays (1-10), composed form the average of the four

essays E1..E4.

C: Team performance for code contributions (1-10)

P: Team performance for poster presentation (1-10)

R: Individual performance in per review reviews (-1, 0, 1) — zero by default

A: Individual performance in participation (-1, 0, 1) — zero by default
The team grade is the weighted average of the team activities:
T=(3%E + C + P)/5

The individual grade then is the team grade to which a bonus can be added (or subtracted) for

exceptionally (top/bottom X%) strong results.

I =T+ 0.5 % (R+A)

Lean
Architecture

for Agile Software ‘ by James O. Coplien

Development & Gertrud Bjernvig

e

[@WILEY

Software Systems

chitecture
 Seon i

w—

Working With Stakeholders Using Viewpoints and Perspectives

NICK ROZANSKI - EOIN WOODS
10

Lean Architecture

Classic Software Architecture

Defers engineering

Includes engineering

Gives the craftsman “wiggle room"” for
change

Tries to limit large changes as
“dangerous” (fear change?)

Defers implementation (delivers
lightweight APIs and descriptions of
relationships)

Includes much implementation
(platforms, libraries) or none at all
(documentation only)

Lightweight documentation

Documentation-focused, to describe the
implementation or compensate for its
absence

People

Tools and notations

Collective planning and cooperation

Specialized planning and control

End user mental model

Technical coupling and cohesion

11

The System Vision (Essay E1)

* You can only architect a system if you know what it is supposed to
achieve

* What (business) value does / will it generate?

* Which defining properties should the system realize?
 What resources are needed to realize the system?
 What resources are needed to operate the system?

e To what system roadmap does this lead?

As an architect, think of anything that is “architecturally significant”

12

End Users” Mental Model

System architecture should reflect the end users’ mental model of
their world:

1. System form relates to the user’s thought process when viewing the
screen, and to what the system is

2. System functionality relates what end users do — interacting with
the system — and how the system should respond to user input.

Figure 2-1

User doing

Roles, identifiers,
activation records

End Users

User Experience
people

Interface designers

i[z Ever-changing
U functionality

User thinking
Classes & Objects
Domain Experts
Architects
Database schemata
Long-term stable
structure

What the system is, and what the system does.

14

Use Case scenario

Roles (Actors in
Use Case-speak)

H 0

slg®-. Ti,E,

15

Exploring Form and Function

» To explore both form and function requires up-front engagement of
all stakeholders, and early exploration of their insights.

* Deferring interactions with stakeholders, or deferring decisions
beyond the responsible moment slows progress, raises cost, and
increases frustration.

e A team acts like a team from the start.

Lean
Architecture

Stakeholder Engagement e

* “Maybe half of software development is about nerd stuff
happening at the whiteboard and about typing at the keyboard.”

* “The other half is about people and relationships. “

* There are few software team activities where this becomes more
obvious than during architecture formulation.

17

|

!

|

e

| Your Learning Objectives |

; - E‘Va\\()\-\.‘ow e

_ Mul\Tiple perple sl g
— Fu AT "Pcojﬁ : ,,E}?mr(%,/f])e %0_‘4'\('/\515
ﬂ%zsi— Prc(é l'l‘CQ} (’V\(}Q Q’(\jh/ SO(,':D C()\(re[& :FUV“C/{'(OW“\\U
= Lmkf)‘ IHus1hess C’om\/@dﬂ' _eae<y

o s S B) o |
,_/DD(/UH\QG']"Q"TOV) T;O(U\ﬂ)e{g _,ﬁb(ﬁ‘ovmf ;\-60\5

The Lean Value Stream

e Continuous, end-to-end process, of people delivering value to
end users

* Avoid stress, overtime, cutting corners on the process to meet
deadline

* “Lean production organizes around value streams instead of
production steps”

Lean Architecture

* Shorten time between
* understanding user needs
* and delivering a solution

* Maximize likelihood that we will deliver what the customer expects

* Realize cost savings (that can be passed on to the user):
* Reduce distance between end user world model and code structure
* Reduce waste (features not needed, bugs, waiting)
* Avoid rework (re-doing work you could have done once)

* Maintain a consistent vision that helps system parts fit together

Stakeholders

* “Many different stakeholders derive value from your product”

* Major stakeholder areas include:

* End users A true software architect is one who
e The business is a domain expert, who knows how
e Customers to apply the domain expertise to the
« Domain experts design of a particular system, and

who materially participates in
implementation

Developers and testers

21

End User

The
Business

Customers

Domain
Experts

Developers
and Testers

End User

The
Business

Customers

Domain
Experts

Developers
and
Testers

| need you on ... to be able to generate value

<

| help you by taking care of ...

22

End User The Customers | Domain Developers
Business Experts and Testers
Feature Purchase Product/ Quality and
End User priorities, | conve- feature proper
scope nience feasibility functionality
The Feasibility Create Process Feasibility Source of
Business standards | require- revenue
ments
Customers | A market Products Create Compliance Source of
and standards | with standards | revenue
services
Domain Range of Workplace |Need for Domain Constraints on
Experts product well-being |standards |synergies and |technology
variation conflicts
Developers | Requirement | Workplace |Advice on | Guidance, Clarification of
and Ccarification |well-being | delivery APIs, how existing
Testers process poka-yoke code works

| need you on ... to be able to generate value

<

| help you by taking care of ...

23

End Users

 What the customer wants or needs?

 What the customer expects!

* Beyond user stories: Elicit an end-user cognitive model
* “Users carry models of the internals of the program they are using

* Form: (Stable) domain structure

* Function: Domain behavior / use cases

25

Fred Brooks: Conceptual Integrity

* The quality of a system where all the concepts and their relationships
with each other are applied in a consistent way throughout the
system.

e Conceptual Integrity is the most important consideration in system
design.

* It is better to have [...] one set of design ideas,
than [...] many good but independent and uncoordinated ideas.

The Business

* Funds software development

* Needs return on investment

* Has stake in well-being of its employees

* Management, sales, marketing, ...

 Owns decisions about project scope
* Buy-versus-build decisions

Customer

* Middleman paying for the product

* Investor before there are any users

* See the costs, but don’t feel the benefits
* Focus on delivery times and rationalizing the development process

Domain Experts

e “Over the years domain experts have integrated the perspectives of
multiple end user communities and other stakeholders into the forms
that underlie the best systems.”

* “Domain expert engagement is to architecture as end user
engagement is to feature development”

* “Innovation in the solution domain goes hand-in-hand with long-term
experience of solution domain experts"

Developers and Testers

* Developers are the prime oracles of technical feasibility

* Developers should be active experts:
* Gather empirical data about architectural trade-offs
* genchi genbutsu 3R 8IZ47): go look and see for yourself.

* Developers should own the development estimates
* Developers and testers “should be friends”

» Architecture defines your test points

e Usability testing is done before coding begins

Conway’s Law

“Organizations which design systems ...
are constrained to produce designs
which are
copies of the communication structures
of these organizations”

Melvin Conway, 1968

30

Socio-
Technical
Congruence

Socio-Technical Congruence: A Framework
for Assessing the Impact of Technical and Work
Dependencies on Software Development Productivity

Marcelo Cataldo

Bosch Corporate Research
Pittsburgh, PA 15212, USA

marcelo.cataldo@us.bosch.com
ABSTRACT
The dentification and of work deg s a
furdamental challenge m soft develop i
This paper argues that modulanzabion, the tradiorsl tech

James D. Herbsleb

Research and Technology Center School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

jdh@cs.cmu.edu

Kathleen M. Carley

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

Kathleen.carley@cmu.edu

1. INTRODUCTION
A gmmrg body of research shows that work dependencies - Le.,
1 ing decasions g other 1 ing dec:

intencled o reduce mierdependencies among comporents o! a
system, has serious hmitations m the context of software devel-
opment. We build on the idea of congruence, proposed in our
prior work, lo examine the relationship between the structure of
technical ard work dependencies and the impact of dependencies
an software development productivity. Our emparical evaluation
of the congruence framework showed that when developers' co-
ordi t patlerns are © witk their coordmation needs,
the resolution tme of modification requests was sagmificantly
reduced. Furthermore, our analysis highlights the mmportance of
identifying the “right™ set of technical dependercies that érive the

} reg among sofb developers. Call and
dats deperdencies appear o have far less mmpact than lJogical
dependencaes.

Categories and Subject Descriptors

D2Y% |Software Engineering]: Management - Froductivity,
Programming Teams. K.6.1 [Management of computing and
information Systems]: Project and People Maragemert - Sofi-
ware development.

General Terms

Management, Measurement, Human Factors.

Keywords

Collaborative software develop | it de-
percencies.

Permission to make digital or hard copies of all or part of this work for
persomal or classroom use 1 granted without fee provaded tal copics s
not made or distibeted for peofit or commercial advantage and that
copies bear this notice and the fisll citation on the first page. To copy
otherwise, or republish, 10 post on servers or 10 redistribule Lo [ists, re-
quires priar specific permissicn and/or 2 fee.

ESEM 08, Ociober 9-10, 2008, Ksiserslautern, Gensmany,

Copyright 2008 ACM 978.1.39552.671.508/10_85.00

is & fundamental challenge m soltware mLklpmm organiza-
bons, particularly in those that are geographically distributed
(e.g., [11][16][25]){28]). The modular product design literature has
extensively d 1ssues with dependencies. De-
sagn structure matrices, for example, kave been used 1o find alter-
native structures that reduce deperdencies among the components
of a system [19)[43]. These research streams can also inform the
design of development orgarizations so they are better able o
identify and manage work deperdencies. However, we first need
o urderstard the assumptions of the different thearetical views
and how those assumptions relate to the charsctenstics of sofl-
ware developeent tasks.

This study argues that modularzston 8 8 recessary but nol a
sufficient harism for kandl the work deg that
emerge in the process of d.n'clup‘ms software systemns, We build
on the concept of Lungmmu mtrocduced by Cataldo et al [10] w
exarmnme bow different types of technical dependencies relate to
work dependencies among sollware developers and, altimnately,
how those work dependencres impact develoy productivity.
Our empanical evaluation of the congruence framework llustzates
the importance of understanding the dynamic nature of soltware
development. ldentifying the “right” set of technical dependencaes
that determme the relevant work deperdencies and coord 2
accordmgly kas sigmificant mmepact on reducieg the resolution time
of software modificabion requests. The analyses showed tradi-
boaal software dependencaes, suck as syntactic relatiorships, tend
o caplure a relatvely narrow view of product deperdencies that
1s ot fully rep ve of the imp product deg -
that drive the pead to coordmate. On the otker hand, logical de-
pendencies provide a more socurate representation of the product
dependencies affecting the development efTort.

The rest of this paper 18 organized as follows. We first discuss the
theoretical background concerning the relationship between tech-
mical and work dependencies m software development projects.
Next, we present the socwo-techmical congruence framework fol-
lowed by a descnption of data, measures andé models used m the
emparical analysis. Frnally, we discuss the results, their mmplica-
toas and fsture work

31

A Good Problem Definition (Ch. 4)

* It is written down and shared.

* [t is a difference between the current state and some desired state of
the organization or business.

* Its achievement is measurable, usually at some mutually understood
point in time.

* It is short: one or two sentences in clear, simple, natural language.

* It is internally consistent: that is, it does not set up an over-
constrained problem.

Jerry Weinberg: Ask yourself: Who owns the problem?

32

Mapping Between Problems and Solutions

* The relationship between problem and solution is rich and complex.

* You can’t just start with a problem definition and methodically
elaborate it into a solution

* The mapping from problems to solutions is many-to-many

* Multiple seemingly unrelated solutions might be required to solve
what you perceive as a single problem

* Some problems seem to defy any mapping at all

Essay 1: The Product Vision

The starting point for your architectural analysis is a description of the vision underlying your project and its

future success. Aspects to take into account include:

1. A concise, inspirational characterization of what the project aims to achieve

2. A description of the end-user mental model that is central to the system

3. A characterization of the key capabilities and properties the system should provide

4. An analysis of the stakeholders involved in the project, and how the resulting system is beneficial to
them

5. A description of the current and future context in which the system operates

6. A product roadmap, laying out the main future directions anticipated for the upcoming years

34

