IN4135:
Software Architecture

Arie van Deursen, February 2020

https://se.ewi.tudelft.nl/delftswa/2020/index.htm]

https://se.ewi.tudelft.nl/delftswa/2020/index.html

Learning Objectives

What do you expect / hope to learn in the
TU Delft Software Architecture Course?

[Actual Answers from 2020 |

| _ Creuchre /modol / 2ot | - Evalwation =

_ Mul\Tiple perple - Tvore Rordmsg

— Fu AT "Pcojﬁ ; ,,E}?mr(%,/f])e VO CAL S

l o Lmr\cf)a Iusihess C/O'V\t@dﬂ,

_opte vs closd s
,_”Da(/uman"a"’r'oh m

Architecture in Context

* What problem will the system solve?
* What are the key capabilities and properties that will generate value?
* In what context will the system operate?
* How will this context evolve the upcoming years?

* How should the system be structured?
* So that it realizes the required capabilities and properties
* Now and in the future

* Who will create and evolve the system?

* Which team roles are to be distinguished?
* How do the people in the teams cooperate?

The Architecture of a System
(IEEE Definition)

* The set of fundamental concepts or properties

e of the system in its environment,
* embodied in its elements and relationships,

* and the principles of its design and evolution.

Reliable Knowledge

What is reliable knowledge in software architecture?

What does it take to increase our
knowledge on software architecture?

- Systems that we know how to build
- Systems that we have not yet built,

but know the process
- Systems we dream about
-- Grady Booch

Post Positivism

* Conjectures and Refutations:
The growth of scientific knowledge

 Testing of hypotheses

* A priori use of theory

Not the dominant paradigm in (software) engineering

Pragmatism

 Clarify meanings of intellectual concepts by tracing out their
“conceivable practical consequences” (Charles Pierce, 1905)

* Pragmatism ... does not insist upon antecedent phenomena
but upon consequent phenomena;

Not upon the precedents but on the possibilities of action
(John Dewey, 1931)

Knowledge Sources

* Theory:
» Battle-tested knowledge that has proven effective in the past
* Frameworks, patterns, processes, ...

* Practice / Experience
* Engineers who learned from their own experience
* Engineers who reflect on their own and others way of working

* Research
* Data collection, hypotheses generation, process support ...
» At the boundaries of what we presently know (... and possibly wrong)

Learning About Architecture

1. Just doit: Engage in architectural activities in realistic setting

2. Study / internalize existing theories and approaches

3. Confront the two with each other

* How does this theory really work?
* Does this theory apply to my system? Why? Why not?

4)
Thesis: Theory
Anti-Thesis: Practice
Synthesis: Understanding

- /

11

Learning Theories through Practice!

* Choose an open source system, from GitHub

 Study its architecture in depth

* Study to what extent architectural theories apply

— The State of the Octoverse -

Top open source projects by
contributors

This year, popular open source projects are
topping 10K contributors. Two have been on
this list since 2016: microsoft/vscode and
ansible/ansible. New in 2019 are flutter/flutter,
firstcontributions/first-contributions, and
home-assistant/home-assistant.™

NUMBER OF CONTRIBUTORS TO OPEN SOURCE PROJECTS

01

02

03

04

05

06

07

08

09

10

microsoft/vscode

MicrosoftDocs/azure-docs

flutter/flutter

firstcontributions/first-contributions

tensorflow/tensorflow

facebook/react-native

kubernetes/kubernetes

DefinitelyTyped/DefinitelyTyped

ansible/ansible

home-assistant/home-assistant

19.1k

14k

13k

11.6k

9.9k

9.1k

6.9k

6.9k

6.8k

6.3k

— The State of the Octoverse -

CHANGE IN CONTRIBUTIONS TO OPEN SOURCE PROJECTS
|

Fastest growing open source

. . aspnet/AspNetCore 9
projects by contributors 01 aspnet/Asp 346%
Kits and frameworks for building apps and 02 flutter/flutter 279%
websites across languages and platforms are

.)) . . 03 MicrosoftDocs/vsts—docs 264%
seeing contributor growth this year. Since its
1.0 release in December 2018, flutter/flutter has 04 istio/istio 194%
climbed to #2.*
05 aws-amplify/amplify-js 188%
06 helm/charts 184%
07 ValveSoftware/Proton 182%
08 gatsbyjs/gatsby 179%
09 storybookjs/storybook 178%

10 cypress—-io/cypress 178%

Growth of Jupyter Notebooks, 2016-
2019

How else can we tell data science is growing
on GitHub? The use of Jupyter Notebooks (by
number of repositories with Jupyter as their
primary language) has seen more than 100%
growth year-over-year for the last three years.*

14

Software Architecture = Team Work

* Few systems are built by a single person

* The architecture is a means of communicating important design
decisions

* Therefore, all assignments done in teams.

e Teamsof4(4!=3,41=5,41=2+2)

Team Composition

®Es
Other

* Aim for diversity

* Git knowledge
* Programming language expertise ,
* Bachelor background

* Current master (track)

Technology
@ SEPAM

* Brightspace discussion forum “Partners Wanted”
* Form your group on Brightspace (Collaboration / Groups)
* DEADLINE: Monday February 17, 17:00

@ CS/ Data Science

@ CS/ Software

16

Assignment 0.1: Team Selects Project!

* Could in principle be any project

* You should be excited about it

* Project should be under active development (> 1 pull requests / day)
* Project should be sufficiently complex (not docs only, e.g.)

* Project should be open to outsiders (check CONTRIBUTING.md)

* Project should not be used years 2018 or 2019 (check DESOSA)

e Use Brightspace “Claim your project” forum.

* DEADLINE: Monday February 17, 17:00

Generated list of ~40 projects on course page

https://brightspace.tudelft.nl/d2l/le/197146/discussions/topics/30295/View

Assignment 0.2: Manage your Time!

e Considerable freedom (own initiative) in what you do
* You need to explain how you spent your time
* 5 EC =140 hours; In 8 week course = 17.5 hours per week!

* Per student: short, reflective journal, commit one entry per week
* Track how many hours you spent
* Main activities conducted
* Main output produced
e Summary of key things learned

Open Learning & Learning from your Peers

This course is open by design
— You learn from what others are doing
— You share your work with others

Work-in-progress writing is visible within course only

Your interaction with open source systems is public
You can decide if you want to make your writings public

All Communication: Mattermost

https://mattermost.ewi.tudelft.nl/sa-2019-2020/

Town Hall — main channel

Off-Topic — your random noise -
. See registration link on
Team-XYZ (public) BrightSpace

— Main communication hub for your team
— Accessible to all; others can help / learn

Use mattermost to
— leave an evidence trail of you work.
— Integrate with other teams

https://medium.com/@daniel.heller/ten-principles-for-growth-69015e08c35b

»g;’ Daniel Gebler

| ‘c,_:j @daniel_gebler

Ten Principles for #Growth as an #Engineer:
1. Reason about business value
2. Unblock yourself

3. Take initiative

4. Improve your writing

9. Own project management

6. Own education

/. Master tools

8. Communicate proactively

O. Collaborate

10. Be reliable

21

4. Improve your writing: Crisp technical writing eases collaboration and
greatly improves your ability to persuade, inform, and teach. Remember
who your audience is and what they know, write clearly and concisely,

and almost always include a tl;dr above the fold.

22

Arie van Deursen @avandeursen - Dec 17,2019
Jeff Bezos on the importance and difficulty of clear writing:

“We don't do PowerPoint (or any other slide-oriented) presentations at
Amazon. Instead, we write narratively structured six-page memos. We
silently read one at the beginning of each meeting.”

sec.gov/Archives/edqgar...

O 2 n 4 QO 13 T 1]

ama;on https://www.sec.gov/Archives/edgar/data/1018724/000119312518121161/d456916dex991.htm -

“Not surprisingly, the quality of these memos varies widely. Some have
the clarity of angels singing. They are brilliant and thoughtful and set up
the meeting for high-quality discussion. Sometimes they come in at the

other end of the spectrum.”

“The great memos are written and re-written, shared with colleagues who
are asked to improve the work, set aside for a couple of days, and then
edited again with a fresh mind. They simply can't be done in a day or

two.”

24

“Surely to write a world class memo, you have to be an extremely skilled
writer? [...] Even in the example of writing a six-page memo, that's
teamwork. Someone on the team needs to have the skill, but it doesn’t
have to be you."”

-

“ https://100x.engineering/the-power-of-the-narrative/

25

Assignments E1-E4: (Technical) Essay Writing

Each team writes four essays (1000-1500 words):

1. the product vision, including required capabilities, roadmap,
product context, and stakeholder analysis.

2. architectural decisions made, including system decomposition,
tradeoff points, as well as architectural styles and patterns adopted.

3. quality control and assessment; and

a deeper analysis based on the lectures or other relevant material
specific to the system of choice;

https://se.ewi.tudelft.nl/delftswa/2020/assignment.html
https://se.ewi.tudelft.nl/delftswa/2020/assignment.html

27

Kruchten’s “4+1 Views”

End User Programmers
Functionality Software Management
Logical Implementation
View View
Analysts/Testers Use-Case
Behavior View
Process Deployment
View View
System Integrators System Engineering
Performance System Topology
Scalability Delivery, Installation
Throughput Communication

IEEE Software, November 1995

Intermezzo: E3 Quality Assessment with SIG |

The Delta Maintainability Model: Measuring

Maintainability of Fine-

Marco di Biase*!, Ayushi Rastogi!, Mn%icl Bruntink®, Aric van Deursen!
Group - A o The

*Software

Grained Code Changes

Email: *[m.dibiase, m.bruntink] @sig.cu,

Ahv-tl—E:hllu maintainability models are used to identify
technical debt of software systems. Targeting entire codebases,
such models lack the ability to determine shortcomings of smaller,
fine-grained changes. This paper propases a new maintainability
model ~ the Delta Maintainability Model (DMM) - to measure
fine-grained code changes, such as commits, by adapting and
extending the SIG Model. DMM
changed lines of code into low and high risk, and then uses
the proportion of low risk change to calculate a delta score. The
goal of the DMM is twofold: first, producing meaningful and
actionable scores; second, compare and rank the maintainability
of fine-grained modifications,

We report on an initial study of the model, with the goal
of understanding if the adapted measurements from the SIG
Maintainability Model suit the fine-grained scope of the DMM. In
a manual inspection process for 100 commits, 67 cases matched
the expert judgment. Furthermore, we report an exploratory
empirical study on a data set of DMM scores on 3,017 issue-fixing
commits

cause
thus, address technical debt at a finer granularity.
1. INTRODUCTION

Software maintainability defines the case with which soft-
ware can be modified, e.g., to correct defects, or to improve
its functionality (1]. Measuring and improving maintainabil-
ity helps managing technical debt, a concept introduced by
Cunningham (2] and then refined by Fowler [3], [4]. To
grasp technical debt, Emst ef al. [5] noted that code analysis
and measurements are the main concrete methods used to
understand technical debt.

Maintainability is a complex concept, and past research
shows efforts towards data-driven approaches to indicate main-
tainability, with several models proposed [6]. Some of these
models are in active use in research or in industry, such as
the SQALE method [7), the Software Improvement Group
Maintainability Model (SIG-MM) by Heitlager et al. (8], or
the QUAMOCO model [9]. These models take the source code
of complete software systems at fixed moments in time (ie.,
snapshots) as their primary units of maintainability analysis.
Such an analysis matches well with the relatively low update
and release frequencies of larger (legacy) software systems.

In recent years however, development is driven by an
increasing level of change granularity. Smaller changes arc
being implemented in software releases [10], continuous in-
tegration tools ensure that every committed code change is
integrated into the primary line of development [11], and

Delft University of Technology - Delft, The Netherlands
H[arastogi, Arie.vanDeursen] @tudelft.nl

developers use fine-grained mechanisms such as pull requests
to review and accept code changes [12]. To support these

modem development practices, maintainability
models need to take fine-grained code changes
or limited number of commits) as their prim
analysis. In this scenario, developers could addrg
that creates technical debt at a finer level of abs
promptly use actionable suggestions rather than re
portions of code. In fact, nonfunctional requirem
maintainability are a concemn during the modern.
processes because they contribute to the comple
tures [13] and managing technical debt reperc
project resources [5).

Despite measuring differences in code metrics
McCabe Complexity [14]) provide a superficial
fine-grained change-maintainability, they lack thi
formalized models available for complete softw
Such models, though, are not suitable to measure
code maintainability as they carry the burden
system codebase. In our view, a fine-grained mi
model should rely on code measurements able
amount of risk introduced over the total change
meaningfully report the maintainability of finc-g
changes abstracting from the full system codebas
scoring system that allows result comparison as]
syster applied.

In this paper we propose a new model for

ratio between low risk code and the overall code
DMM identifies code riskiness by reusing softwa
risk profiles of the SIG-MM, while applying new’
and scoring for software metric deltas at the
grained code changes like commits or pull req
of aggregating at the system level. The DMM does not aim
10 replace the SIG-MM, rather, complement its system-level
analysis with direct support for finc-grained code changes.
In the study, we first focus on understanding if the SIG-
MM measurements suit the fine-grained scope of the DMM.
In a manual inspection process, we measure a sample of 100
code changes against the intuition and expertise of the main
authors. Then, we analyze data of the DMM’s outcomes on
3,017 fine-grained code changes, originating from four open-
source and four closed-source systems, to understand whether
the score produced suits the needs of ranking and interpret-

C @& softwareimprovementgroup.com/solutions/

N IF

Solutions

Products

Sigrid | Software Assurance Platform >
Sigrid for Mendix AQM >

Sigrid for Siemens CSD >

SIG Academy >

Better Code Hub >

Use Cases Solutions Industries
Services
Software Risk A >

Security and Privacy Assessment >

Software Risk Monitoring and Advisory >

Development Productivity and Efficiency >

IT Due Diligence >
Sell-Side Due Diligence >

Post-Acquisition Monitoring >

28

Componentization of a Software System

* Important to measure related architectural aspects that | will
explain and share with you in 2 weeks (Lecture of February 26)

» Useful for the remainder phases/assignments of your project
* Will help you answering questions like:

— How does each component interact with each other?

— |s this supposed to be the case?

— Can we identify possible improvements or can we learn
something?

Why you need to do it?

D Recommended practice
Component M
N/
[
"4 \l
<

Why you need to do it?

Slg[ld Tudelft > Demo > Architecture <Beta> e

This feature ich means it may nof rk perfectly for your portfolio or system. If you have any feedback, please let us k

9, Maintainability

Architecture
= <Beta>

Y Deselect all Export to PNG Reset layout

travis
antlrd-maven-plugin
doc

runtime

seripts

tool 16

travis antir4-maven-plugin scripts

v VvV v v v v

doc tool
2

runtime

Need help?

I’ll be sharing a guideline on how to identify system components
Discuss first within your team and then try to draft a first componentization
Still stuck? -> #system-component in Mattermost

A good idea is to join the channel so that you learn from other projects and you can
help each other

We will have ~25 projects, so we cannot pinpoint ALL your issues because of time
reasons

Assignments E1-E4: (Technical) Essay Writing

Each team writes four essays (1000-1500 words):

1. the product vision, including required capabilities, roadmap,
product context, and stakeholder analysis.

2. architectural decisions made, including system decomposition,
tradeoff points, as well as architectural styles and patterns adopted.

3. quality control and assessment; and

a deeper analysis based on the lectures or other relevant material
specific to the system of choice;

https://se.ewi.tudelft.nl/delftswa/2020/assignment.html
https://se.ewi.tudelft.nl/delftswa/2020/assignment.html

General Essay Requirements

* Sentences, paragraphs, and sections are coherent. They naturally
build upon each other and work towards a clear message.

* The arguments are sound, and of adequate technical depth.

* The English writing is grammatically correct

* The text clearly references any sources it builds upon

* The essay has a voice of its own, and is original in its approach
* It is independently readable

* It uses meaningful and appealing images or infographics.

Public Writing makes Better Writers

* Objective 1: Write for the course
* Objective 2: Write for the world

* Throughout the course, your team can make your work available

 Delft Students on Software Architecture (DESOSA)

C & se.ewi.tudelft.nl/desosa2019/

Delft Students On
Software Architecture

01. Arduino IDE
02. Cataclysm
03. Cockpit
04. Django
05. Eclipse Che
06. Flair
07. Flutter
08. Gutenberg
09. Home Assistant
10. IPFS
11. Keras
12. Kotlin
13. Lila
14. MAPS.ME
15. Pandas
16. Poco
17. Polymer

. PowerShell
19. PyTorch
20. React Native
21. SciPy
22. Servo
23. Spring Boot
24. Terraform
25.Vim
26. Zephyr
27. Zulip

Delft Students on Software Architecture: DESOSA
2019

Arie van Deursen, Mauricio Aniche, and Andy Zaidman
Delft University of Technology, The Netherlands, December 20, 2019

We are proud to present the fifth edition of Delft Students on Software Architecture, a collection of 25 architectural descriptions of open
source software systems written by students from Delft University of Technology during a master-level course that took place in the spring
of 2019.

In this course, teams of approximately 4 students could adopt an open source project of choice on GitHub. The projects selected had to
be sufficiently complex and actively maintained (one or more pull requests merged per day).

During an 8-week period, the students spent one third of their time on this course, and engaged with these systems in order to
understand and describe their software architecture.

Inspired by Amy Brown and Greg Wilson’s Architecture of Open Source Applications, we decided to organize each description as a
chapter, resulting in the present online book.

Recurring Themes

The chapters share several common themes, which are based on smaller assignments the students conducted as part of the course.
These themes cover different architectural ‘theories’ as available on the web or in textbooks. The course used Rozanski and Woods’
Software Systems Architecture, and therefore several of their architectural viewpoints and perspectives recur.

The first theme is outward looking, focusing on the use of the system. Thus, many of the chapters contain an explicit stakeholder analysis,
as well as a description of the context in which the systems operate. These were based on available online documentation, as well as on
an analysis of open and recently closed (GitHub) issues for these systems.

A second theme involves the development viewpoint, covering modules, layers, components, and their inter-dependencies. Furthermore,
it addresses integration and testing processes used for the system under analysis.

A third recurring theme is technical debt. Large and long existing projects are commonly vulnerable to debt. The students assessed the
current debt in the systems and provided proposals on resolving this debt where possible.

Besides these common themes, students were encouraged to include an analysis of additional viewpoints and perspectives, addressing,
e.g., security, privacy, regulatory, evolution, or product configuration aspects of the system they studied.

First-Hand Experience

Last but not least, all students made a substantial effort to try to contribute to the actual projects. With these contributions the students
had the ability to interact with the community; they often discussed with other developers and architects of the systems. This provided
them insights in the architectural trade-offs made in these systems.

Student contributions included documentation changes, bug fixes, refactorings, as well as small new features.

¥

36

< C & delftswa.gitbooks.io/desosa2018/mattermost/chapter.html & % 0 6

Angular
Docker
Eden
ElasticSearch
Electron
Godot
Jenkins
Kubernetes
Lighthouse
Loopback
Mattermost
Mbedos
Oosu
Phaser
React
Spark
TypeScript
Vue.js
Xmage

Open source contributions

Published with GitBook

(9 Mattermost

B

Shang Xiang Xinyue Wang Luke Prananta Jasper van Esveld
@CoolTomatos @XinyueWang94 @Imikaellukerad @GitHublJasper

Abstract

Mattermost is an open source, cloud-based and self-hosted Slack alternative. The company came to
realize the limitations and restrictions of Slack when they adopted it as their messaging service in 2014.
This is when they decided to build their own messaging software, Mattermost. In this chapter we analyze
the software architecture of Mattermost by looking at the stakeholders, the context view, development
view, deployment view, security perspective and technical debt as defined by Rozanksi and Woods [1].
We find out that Mattermost has a well-organized development process and is currently in the process of
repaying technical debt by moving the web app to Redux.

37

< C & delftswa.gitbooks.io/desosa-2017/content/neovim/chapter.htmi * @ e

Introduction
Arduino
Gradle

JabRef

JUnit5

Jupyter Notebook
Kafka

Kibana
Magento
Mapbox GL JS
Matplotlib
Mockito
Neovim

Netty

Node
Processing
Scikit-learn
Scrapy
Syncthing
Telegram Web

VSCode

attps://delftswa.gitbooks.io/desosa- 2017/content/neowm/chapter html 3

Neovim

Team

Nneovim
DE S

In order of appearance: loannis Petros Samiotis, Thomas Millross, Sander Bosma and Jente Hidskes.

Abstract

This chapter describes the software architecture of Neovim: an open source code editor based on Vim.
This analytical essay will provide interested readers with objective and relevant insights into the
challenges and architectural decisions of the Neovim development effort. Neovim’s software architecture
is assessed within the Rozanski and Woods [1] framework. The system stakeholders are detailed and
cateaorised. Then the context and development viewpoints are described, followed by an analysis from

of iakbiliti ondl voalution Ciaalbothbho b Lol Lokt £ il oot io.o. a ond

38

DESOSA: Past / Present

Past Present

* Book with chapters Collection of essays (blogs)

* One chapter per team * Four essays per team

* Each team own git repo * All teams in one shared git repo
* Book published after course * Blogs shared during course

* Graded by teachers * Peer review

* Teams can opt-out * Teams can opt-out

e All documents in markdown * All documents in markdown

é

c

& desosa2020.netlify.com/projects/reactnative/

DESOSA 2020

REACT NATIVE

With the mobile form factor becoming increasingly common for consumer applications, the
quality, and coherence of user experience are more important than ever. No longer are
users satisfied with services wrapping a web application in a web view container and
publishing it as a mobile application. Users expect native, high-quality interfaces which fit
well in their host’s ecosystem. React Native provides a framework for developing such
interfaces, in a cross-platform fashion. By writing JavaScript code with React components,
developers can leverage native Android and iOS components and APIs.

In this chapter, we present our view of the React Native framework. First, we take a look at
the stakeholders involved in the project and place it in its broader context. We then dive into
React Native's architecture and implementation. Following this, we investigate the process
that the React Native team employs to integrate changes and evaluate the past and current
state of technical debt in the system. Finally, we analyze how developers use React Native
and what improvements can be gathered from these patterns.

* © 6

About Projects

40

How React Native is developed

For large projects, it is essential to carefully consider the

code structure and identify common processes. To achieve a Feb 11, 2020
maintainable codebase, it is also important to standardize

issue tracking, code style, and testing, to name a few. This

section outlines the development view, which aims to provide

an overview of these key aspects of the system. Read more »

The people behind React Native

We conducted a stakeholder analysis to find which parties

have an interest in the development of React Native. We Feb 9, 2020
categorized these into stakeholder classes as outlined in

Rozanski and Woods ', and added three more classes

relevant to this project: competitors, ecosystem enhancers,

and integrators.

1. Nick Rozanski and Eoin Woods. Software Systems
Architecture: Working with Stakeholders using
Viewpoints and Perspectives. Addison-Wesley, 2012.

Read more »

41

IN4315 > 2019-2020 > desosa2020 > Repository

master deso0sa2020 / projects / reactnative / _posts Lock History

[+ v

Add example content with images
Casper Boone authored 6 hours ago

Name

@ images/reactnative
[3) 2020-02-09-stakeholders.md

[2020-02-10-people.md

[2) 2020-02-11-how-react-native-is-develope...

[3 2020-02-11-react-native-pull-request-anal...

Last commit

Add example content with images

Use consistent markdown file extension

Use consistent markdown file extension

Add example content with images

Add example content with images

Q. Find file

Unverified

Web IDE & v

labf2044 (g

Last update

6 hours ago

10 hours ago

10 hours ago

6 hours ago

6 hours ago

43

Learn from Open Source Architects:
Offer them a Contribution

e Make a useful contribution to the
system you study

.) . Get in touch with the
* Offer it to the system’s architects as a el

pull request

Make them read your work

Interview them for your blog?!

* They will discuss it with you,
... and hopefully merge it.

Contributions in Earlier Years

e Around 3-4 pull requests per team made
* Around half of them merged

e Refactorings, bug fixes, documentation, features
* Docker, Jekyll, JUnit5, yarn, ...

e Start small (“micro-contribution”) and EARLY
* Be professional, polite and efficient
* Follow development guidelines (CONTRIBUTING.md)

€« > C \ GitHub, Inc. [US]|https://ithub.com/docker/docker/blob/master/CONTRIBUTING.md

Branch: master v docker / CONTRIBUTING.md Find file Copy path

. unclejack CONTRIBUTING: add guidelines regarding email 64e8fa9 on Jan 8

2eonivos SANPEDEN B \EEAESE B BER & o

435 lines (319 sloc) 17.6 KB Raw Blame History [4 10

Contributing to Docker

Want to hack on Docker? Awesome! We have a contributor's guide that explains setting up a Docker development
environment and the contribution process.

See the Project
Contributors Guide
@docs.docker.com

This page contains information about reporting issues as well as some tips and guidelines useful to experienced open
source contributors. Finally, make sure you read our community guidelines before you start participating.

Topics

* Reporting Security Issues

* Design and Cleanup Proposals

* Reporting Issues

* Quick Contribution Tips and Guidelines
» Community Guidelines

45

< C @ code.facebook.com/cla Qa % O e :

Contributing to Facebook Projects

Welcome to the Facebook Open Source community! We require that all contributions to our projects are
accompanied by a signed contributor license agreement (CLA) before we can accept them. Please select

the appropriate option below.

Individual & Company L.

Select this if you are signing the CLA on behalf Select this if you are signing the CLA on behalf
of yourself. of your employer.

46

Closing Day: April 3

Poster session

Poster “competition”

— Teams will rank / evaluate three other posters
— Awards for overall top 3

Drinks

[Details will follow]

The good software architect is
hungry for new knowledge

What would you ask if you could talk
to a top-architect from IBM?

Architecture Defined

Architecture represents
the significant design decisions
that shape a system
where significant is measured
by cost of change

(Grady Booch, March 2006)

Grady Booch, ACM/IEEE/IBM Fellow

Grady Booch & v
@Grady_Booch

In truth, only 873 software issues in (approximately) eight
million lines of (mostly hard real time) code on board the
F35 is an impressivly small number.

That being said, a plane that can't shoot straight is just a
very expensive chunk of metal.

F-35's Gun That Can’t Shoot Straight Adds to Its Roster of Flaws

Add a gun that can’t shoot straight to the problems that dog Lockheed Martin
Corp.'s $428 billion F-35 program, including more than 800 software flaws.
& bloomberg.com

50
8:18 PM - Jan 31, 2020 - Twitter Web App

7 Waldo Jaquith @waldojaquith - Feb 5

When government pays companies to build big custom software programs for them,
they succeed just 13% of the time. Now | will tell you why failure is so common, and
about the simple change that turns those outcomes on their head.

Show this thread

1:58 AM - Feb 7, 2020 - Twitter for iPhone

10 Retweets 70 Likes

51

« "k GradyBooch &
@Grady_Booch

That sounds high.

7 Waldo Jaquith @waldojaquith - Feb 5

When government pays companies to build big custom software programs for them,
they succeed just 13% of the time. Now | will tell you why failure is so common, and
about the simple change that turns those outcomes on their head.

Show this thread

1:58 AM - Feb 7, 2020 - Twitter for iPhone

10 Retweets 70 Likes

52

« " GradyBooch @

< ‘-?:if @Grady_Booch

When you screw up as thoroughly and as publicly as did
Shadow on what should have been a relatively
straightforward piece of software, you know there is
something horrible, fundamentally wrong with your
development process.

And the company management thereof.

D VentureBeat & @VentureBeat - Feb 4

Mysterious startup Shadow under scrutiny after lowa Caucus meltdown
wp.me/p8wLEc-a0g5 by @obrien

6:24 PM - Feb 4, 2020 - Twitter for iPhone

53

"#L. Grady Booch &)
- @Grady_Booch

Every line of code has a moral and ethical implication.

54

Architecting the Unknown

... Where science moves from the unknown to the known,
we in computing are largely moving

from the known to the unknown

and in many ways we are constrained

by [...] our own imagination

Grady Booch — SATURN 2016 keynote 55

Preparation (l): Watch before February 14

 SATURN 2016 keynote: Architecting the Unknown
https://www.youtube.com/watch?v=RJ3v5cSNcB8

 |CSE SEIP 2015 keynote: The Future of Software Engineering
https://www.youtube.com/watch?v=h1TGJJ-F-fE

 TED 2016: Don’t Fear Superintelligent Al
https://www.youtube.com/watch?v=z0HsPBKfhol

https://www.youtube.com/watch?v=RJ3v5cSNcB8
https://www.youtube.com/watch?v=h1TGJJ-F-fE
https://www.youtube.com/watch?v=z0HsPBKfhoI

Preparation |

* Think of questions you’d like to ask.

* Grady expects you to be curious and critical

e Share on Mattermost #ama channel.

* During AMA, you’ll get opportunity to ask them yourself

57

4 fi Delft SWA v
i T @DelftSWA

.@freire_da_silva You do not ask your boss: Can | go to
the toilet? You don't just shit in your pants, so do also not
just shit on your code

58

9:45 PM - Mar 2, 2017 - Twitter Web Client

