Documenting & Communicating
Software Architectures

Arie van Deursen

@ Grady Booch

<. The Architecture of Open Source

Applications

@,
uzel

= o EESSs O W.
The Architecture of

Open Source Applications

Elegance, Evolution, and a Few Fearless Hacks

s
- -

The Architecture of Open Source Applications
Volume Ii: Structure, Scale, and a Few More Fearless Hacks

The Perfonce of

Open Source Applications
Speed, Precision, and a Bit of Serendipity

Edited by Amy Brown & Greg Wilson

AOSA Example: Git

1. Gitin a Nutshell
Git’s Origin

Susan Potter

N

3. Version Control System e
Design * oe: Inieger

4. The Toolkit SR

5. The Repository ’jﬂnﬂlF_‘

6. The Object Database Tres I Tag |

7. Storage ’7 e i

8. Merge Histories 1 |(j_| I

9. What’s Next? s " [_ | 01
0.r o ommit

10. Lessons learned , {;‘E'S:}gg | message: Strng I._

Kruchten’s “4+1 Views”

End User Programmers
Functionality Software Management
Logical Implementation
View View
Analysts/Testers Use-Case
Behavior View
Process Deployment
View View
System Integrators System Engineering
Performance System Topology
Scalability Delivery, Installation
Throughput Communication

IEEE Software, November 1995

rchitectural Views: Bones, Muscles, Nerves

Brain —
. B Cerebellum
, ¥ Spinal cord
deltoid 7 B
pectoralis major i rotator cuff Brachial plexus —_—— s
e — NS
Musculocutaneous —— =4
rectus abdominis biceps brachii nerve ZAS Intercostal nerves
Radial 1S
brachialis ZRX
i nerve 5 S - I
{ i T ubcostal nerve
¥ Abc'lomlnal external pronator teres o jian nerve 211
—— ;gbllque A
. , N AN Lumbar plexus
- - - g e brachiorallighiypogastric [[1) | AN
Coooyx £ ol nerve 7AN T\ | Sacral
P AN
) s | camas Genitofemoral _[[Lf = 7} plexus
R nerve I\ 4 3¢ ———— Femoral nerve
Phalanges Obturator nerve—+7" =
4% / s Pudental nerve
) Ulnar nerve ”
Sciatic nerve
{ Muscular branches
o Femu dri f . Common _- of femoral nerve
)) quadriceps femoris peroneal nerve
gz s —o Saphenous nerve
W b
B peroneus longus- _
Fbula Deep peroneal v Tibial nerve
tibialis anterior nerve
peroneus brevis Superficial T
peroneal
Y
P~ - - . Tarsals nerve
e Mewmursals

Viewpoints

A collection of patterns, templates, and conventions for constructing
one type of view.

* Defines the
* stakeholders whose concerns are reflected in the viewpoint
* and the guidelines, principles, and template models for constructing its views.

Software Systems

chitecture
Second Eto_,

A Viewpoint Taxonomy

Working With Stakeholders Using Viewpoints and Perspectives.

NICK ROZANSKI - EOIN WOODS

Deployment defines operation of Operational
View View

defines runtime
environment for

defines scope, context, defines implemention

and interfaces for Software constraints for Development

Context View Design View

Information Concurrency

Functional View View View

Context View

Describes the
relationships, dependencies, and interactions

between the system and its environment

Environment: the people, systems, and external entities
with which it interacts

ORGANIZATION

Jewell Azarenkov Micklea

r
E .
EC LI ps E donated Che kernel to c 0 D E N v Y acquired by ‘

FOUNDATION redriat

b

project lead by

assigns mentors

is part of

i i i is mentored by
> N

Developers Product Plugin
targets

owners providers
f \
\ DEVELOPMENT

@O 9 } G o D
&Echpse Che)=

RED HAT
[$ 3o

kernel developed by is the main contributor

built using sonarcloud ®

Continuous integration & testing, AP tooling

uses,

Licensed under / follows

docker

supports community interaction via

Version control, issue
tracking, wiki . .
Container orchestration
© B P
Eclipse Public License 2.0 Mjeans
Y M CheConf1
Contributor covenant = Apache
Tomcat Posi A

App server, persistence Auth

PROJECT MANAGEMENT CONNECTED SERVICES

[Users \

Several companies
Google

Use

/ Communication

24

polymer-project.org

/" Developers

Use

©) GitHub _ ®

NETFLIX
Ceetoly

Used by

\ 4

v E
0

-

Google

Polymer Core team
Developed
by

Github
Contributors

Use

A 4

-

Development Tools

In general

Runs in

[Rur‘lrs in \

Web browsers

\ 4

/" Competitors \
VVue.js
@React

Breuss

JavaScript

¢) GitHub

npm
<

License

BSD

Testing

©

7

(AT

i, Travisﬂ

"Always design a thing by considering it in its next larger context"

Context
(Ecosystem)

System-in-Context

(use, dev, ops)

—Eliel Saarinen

System

s
-
-
-
wt
==
i
-
-
s
-
o
-
-
=

...
-~
=

Strategy

ecosystem interventions

“Requirements”
design of system
capabilities

Architecture

structure and
mechanisms

Y

Development View

Describes the architecture that supports
the software development process.

Communicates the aspects of the
architecture of interest to stakeholders
involved in building, testing, maintaining,
and enhancing the system.

12

_ torch | [torch.autograd '

torch.nn | torch.multiprocessing ' torch.utils

J

JPython library components

o wra?®™ Python AP
A
Autograd ATen JIT
C++ C++ C++
A T A
- TH THC)
C CUDA
—4 |7]
THNN THCUNN
- C CUDA _

Autq

Lila (lichess)

- Web Application using Play
- built with scalabuildtool (sbt)

frontend backend
Routes
Static resources provide link requests 1o controllers

HTML /CSS /JS

Images / Animations

resources served from /public

o

complied Dynamic resources
o
HTML templates /
Executables using Twirl / scalatags
JS/TS sources

built with gulp / yarn

compiled to static resource
directory in backend project

dccess

/ define routes for static resources

i

Controllers

construct responses

compile | link business logic to requests
to

HTML '\

Model

all backend logic

data models and db access

very modularized

F
lutter

\V

Alternative Catalogs

“View types”:

* Module

* Component & Connector
* Allocation

Component & connectors:

* Pipe and filter, shared data,
publish subscribe, client-server,

p2p, ...

o
z
14
w
W
z
o
z
W
w
14
<
2
-
L
0
]
'3
z
)]
W
x
w
]
W
(1]

Documenting
Software
Architectures

Views
and
Beyond

SECOND EDITION

16

Example: Pipes & Filter

@ Pibe Filter Pipe Filter Pipe @

Filter

Pibe Pibe

17

SO Software Quality Characteristics

Functional Suitability N’fomame Efficiency Compatibility

Reliability

A
Security m Maintainability Portability

Privacy by Design (Since 1995)

Full functionality:
positive sum End-to-end
Transparency security
@ Privacy as
User-centric the default
K 3 setting
& O
ZN
Privacy Proactive,
embedded Tl not
into design mulw e reactive

Redesigning IP Geolocation:

Privacy by Design and Online
Targeted Advertising

October 2010

cmsmmo | bering #a ‘

Privacy by Design:
Achieving the Gold Standard
in Data Protection for the Smart Grid

5.1 o
NS0V 6z |

Uber’s Approach to Data Deletion

@ Support scale of data, data stores, and

"V microservices

. . r Time based [9
@ Privacy Impact Assessment and Technical L -

. . Deletion Service
1"0" Privacy Reviews

¢ Job Store

—> —>
@ Vetting process combines legal and & ”

User Initiated Delete Account
"' technical privacy T detete
. Q Inactive delet
Automate onboarding process for new X accounts

"V services

21

Realizing Quality Attributes

* An architecture must realize the required quality attributes

* Models required that permit reasoning over quality attributes

* Architectural decisions may have to make tradeoff between
conflicting quality attributes

Architectural Perspectives

An architectural perspective is a

collection of architectural activities, tactics, and
guidelines

that are used to ensure that a system exhibits a
particular set of related quality properties

that require consideration across a number of the
system’s architectural views.

(Security Perspective) CAccessibility Perspectlve)

(Performa nce Perspedive) (Location Perspective)
(Availability Persp-ective) (Regulation Perspective) Ch.4
(Usability Perspective) etc.
Context View
| e L R e |
4 3! 4 A
: Functional View : Development View
I
& v N ¥,
I | R e e]
¥ N ¥ \!
i Information View : I Deployment View :
[
AN VAR N e
! | ' I
s N) |
i Concurrency View : : Operational View :
[
I\ VAN N S 23

The arc42.org Template for
Architecture Communication and Documentation

1. Introduction and Goals

2. Constraints B>T

3. Context and Scope

\ %4

—I—f\

£

introcuction and uallty Stakeholder
] Goal Description Who? | Expectation?
Required
Scope & Context
business technical

=

—

The arc42.org Template for
Architecture Communication and Documentation

4. Solution strategy

5. Building block view i .
6. Run time view | Concepts ~
7. Deployment view ; | e BEmE
. | S \
8. Crosscutting concepts J |
ol
9. Architectural decisions \ / e

The arc42.org Template for
Architecture Communication and Documentation

Usage
]] % —*| System —>®
10. Quality Requirements

/ Metric
o

6

F

/_/\\/_/

Event, stimulus Reaction

& docs.arc42.org/keyw e :
/@ B
11. Risks and Technical Debt AI'C

arc42 Documentation
139 tips how to use the arc42 template.

Software System

Container

(e.g. client-side web app, server-side web app, console application,
mobile app, microservice, database schema, file system, etc)

Component

Personal Banking

Customer

[Person]

A customer of the bank, with
personal bank accounts.

Internet Banking System
[Software System]

Allows customers to view
information about their bank
accounts, and make payments.

Mainframe Banking

System
[Software System]

Stores all of the core banking
information about customers,
accounts, transactions, etc.

System Context diagram for Internet Banking System

The system context diagram for the Internet Banking System.
Last modified: Wednesday 02 May 2018 13:46 UTC

N

N
Sends e-mails to
AN
AN
N
E-mail System
Sends e-mail [Software System]
using - . .
[SMTP] The internal Microsoft Exchange
e-mail system.

Personal Banking

Customer

[Person]

A customer of the bank, with
personal bank accounts.

Provides a limited subset of the
Internet banking functionality to

7
7
A
-
Uses / \
HTTPS
_ [1 Uses Uses
< / \
7
_____________ A
Web Application - S
[Container: Java and Spring MVC] SIngle'Page Appllcatlon
Delivers [Container: JavaScript and Angular]
Delivers the static content and the N 2
Internet banking single page Provides all of the Internet banking
application, functionality to customers via their
web browser.
\ /
Uses Uses
[ISON/HTTPS] [ISON/HTTPS]
\ /
\ /
DETE]ETR API Application
[Container: Relational Database Schema] Reads from and [Container: Java and Spring MVC]
. - . - writes to - . .
Stores user registration information, 1DBq] Provides Internet banking

hashed authentication credentials,
access logs, etc.

Internet Banking System
[Software System]

functionality via a JSON/HTTPS API.

Mobile App

[Container: Xamarin]

customers via their mobile device.

e

N
Sends e-mails to

7
Sends e-mail
using
- [sMTP]
7

— —Uses
XML/HTTPS]

Container diagram for Internet Banking System
The container diagram for the Internet Banking System.
Last modified: Wednesday 02 May 2018 13:46 UTC

E-mail System
[Software System]

The internal Microsoft Exchange
e-mail system.

Mainframe Banking
System

[Software System]

Stores all of the core banking
information about customers,
accounts, transactions, etc.

Mobile App

[Container: Xamarin]

Single-Page Application
[Container: JavaScript and Angular]
Provides a limited subset of the
Internet banking functionality to
customers via their mobile device.

Provides all of the Internet banking
functionality to customers via their
web browser.

Uses ~ Uses Uses - Uses
[SON/HTTPS] [SON/HTTPS}~ _~[SON/HTTPS] [SON/HTTPS]
=

Mainframe Banking

System
_ _ Uses o [Software System]
[XML/HTTPS] Stores all of the core banking

information about customers,
accounts, transactions, etc.

|
|
|
|
|
|
|
|
| Uses Uses
|
|
|
|
|
|
|
|
|

API Application
[Container]
[Contanen Reads from and

writes to
uoBC
|

Database

[Container: Relational Database Schema]

Stores user registration information,
hashed authentication credentials,
access logs, etc.

Component diagram for Internet Banking System - APl Application
The component diagram for the API Application.
Last modified: Wednesday 02 May 2018 13:46 UTC

InternetBankingSystemException

com.bigbankplc.internetbanking.component.mainframe

MainframeBankingSystemFacade

Mainf KingSystemFacadelmpl | Hhrows MainframeBankingSy xception
*-.tparses
.-~ ¥creates
o tuses N
GetBalanceRequest : GetBalanceResponse
i
BankingSystemConnection
\‘~~.+[eceives
_.--""+sends el
AbstractRequest AbstractResponse

Why doesn't the C4
model cover
business processes,
workflows, state
machines, domain
models, data
models, etc?

The focus of the C4 model is the static structures
that make up a software system, at different
levels of abstraction. If you need to describe
other aspects, feel free to supplement the C4
diagrams with UML diagrams, BPML diagrams,
ArchiMate diagrams, entity relationship
diagrams, etc.

The C4 model vs
UML, ArchiMate and
SysML?

Although existing notations such as UML,
ArchiMate and SysML already exist, many
software development teams don't seem to use
them. Often this is because teams don't know
these notations well enough, perceive them to
be too complicated, think they are not
compatible with agile approaches or don't have
the required tooling.

If you are already successfully using one of these
notations to communicate software architecture
and it's working, stick with it. If not, try the C4
model. And don't be afraid to supplement the C4
diagrams with UML state diagrams, timing
diagrams, etc if you need to.

c

Can we combine C4
and arc42?

Yes, many teams do, and the C4 model is
compatible with the arc42 documentation
template as follows.

e Context and Scope => System Context
diagram

¢ Building Block View (level 1) => Container
diagram

¢ Building Block View (level 2) =>
Component diagram

¢ Building Block View (level 3) => Class
diagram

@& structurizr.com/help/academic

-_

w» Friesland College, Netherlands (@fcroc.nl)

-

w» HAN University of Applied Sciences, Netherlands (@han.nl, @student.han.nl)

-
- Technische Universiteit Delft, Netherlands (@tudelft.nl, @student.tudelft.nl)

What Is Technical Debt?

* Ward Cunningham:

* “| coined the debt metaphor to explain
the refactoring that we were doing.”

 Michael Feathers:

* “The refactoring effort needed to add a
feature non invasively”

http://c2.com/cgi/wiki?WardExplainsDebtMetaphor

https://www.youtube.com/watch?v=7hL6g1aTGvo

33

https://www.youtube.com/watch?v=7hL6g1aTGvo
http://c2.com/cgi/wiki?WardExplainsDebtMetaphor

Any software system has
a certain amount of

essential complexity

Cruft causes changes
required to do its job...

to take more effort

4 44
4o

... but most systems

contain cruft that makes it
harder to understand.

The technical debt metaphor treats the
cruft as a debt, whose interest payments
are the extra effort these changes require.

Visible Invisible

VSRR 25 Architectural,
Added Structural
Value functionality B CELUIES

Positive

Negative Technical
Value Debt

Kruchten, 2013:
The (missing) value of software architecture

Technical Debt Quadrants

Reckless Prudent

“We must ship now
and deal with the
consequences”

“We don’t have
time for design”

Deliberate

Accidental

“Now we know
how we should
have done it”

“What’s
Layering?”

Learning how to do it

| am in favor of writing code to reflect
your current understanding of a problem
even if that understanding is partial

http://c2.com/cgi/wiki?WardExplainsDebtMetaphor

37

Assessing Technical Debt?

e https://www.sonarqube.org/

* https://www.jarchitect.com/Metrics
* https://github.com/tsantalis/JDeodorant

https://www.sonarqube.org/
https://www.jarchitect.com/Metrics
https://github.com/tsantalis/JDeodorant

Beware: Debt is Relative

* The refactoring effort needed to add a feature (resolve an issue)
non invasively
* Debt depends on features and issues to solve

 Systems are used and society progresses

* New libraries and versions come available
* Actual usage affects our understanding of what matters

* Debt quantifications / visualizations are only useful when they
lead to action. Avoid ranting; propose rational action instead.

Microservices

* Small, autonomous services
that work together

* Single Responsibility Principle:
» Gather together those things that
change for the same reason

 Strong cohesion within the service

* Loose coupling among services

Building

Mic

TOSEIVICEeS

L, | L

40

Modeled around Culture of
business concepts automation

-
Hide internal
implementation
details

| i l Microservices
obl;légrc;{“e Small autpnomous
services
Isolate
failure Deploy
independently

Decentralize all
the things

41

Microservices

iOS App Android App Web Service

The Role of the Architect

The architect is responsible for designing, documenting, and leading the

construction of a system that meets the needs of all its stakeholders.

Software Systems
hitecture

2 Second Edion__

44

Fred Brooks: Conceptual Integrity

The quality of a system where all the concepts and their relationships
with each other are applied in a consistent way throughout the system.

Conceptual Integrity is the most important consideration in system
design.

It is better to have [...] one set of design ideas,
than [...] many good but independent and uncoordinated ideas.

How many Architects?

Conceptual integrity in turn dictates
that the design must proceed from one mind, or from a very small
number
of agreeing resonant minds

The Evolutionary Architect

“architects need to shift their thinking away from
creating the perfect end product,

and instead focus on helping create a framework in
which the right systems can emerge,
and continue to grow as we learn more.”

Building

Microservices

S, LA U

o
e

<gg€§‘é{§f?o

47

Software Architect = Town Planner il

Microservices

e, | b o

* Attempt to optimize the layout of a city
* to best suit the needs of the citizens today,
* taking into account future use

* Cannot foresee everything that will happen.
* Don’t plan for any eventuality,
* Plan to allow for change

48

The Coding Architect?

e Architects must ensure that

systems are ‘habitable’ for developers too.

* Architects must spend time with the team

* Architects must spend time coding
e Pair with a developer
* Beyond code review

* This should be a routine activity

ORELLY

Building
Microservices

L, | LA

49

