
Documenting & Communicating
Software Architectures

Arie van Deursen

2

AOSA Example: Git
1. Git in a Nutshell
2. Git’s Origin
3. Version Control System

Design
4. The Toolkit
5. The Repository
6. The Object Database
7. Storage
8. Merge Histories
9. What’s Next?
10. Lessons learned

3

Susan Potter

Kruchten’s “4+1 Views”

4

IEEE So'ware, November 1995

Architectural Views: Bones, Muscles, Nerves

5

Viewpoints

• A collec'on of pa,erns, templates, and conven'ons for construc'ng
one type of view.

• Defines the
• stakeholders whose concerns are reflected in the viewpoint
• and the guidelines, principles, and template models for construc'ng its views.

6

Ch.3

A Viewpoint Taxonomy

7

Context View

Describes the
relationships, dependencies, and interactions

between the system and its environment

Environment: the people, systems, and external entities
with which it interacts

8

Ch.16

11

Development View

Describes the architecture that supports
the so/ware development process.

Communicates the aspects of the
architecture of interest to stakeholders

involved in building, tes<ng, maintaining,
and enhancing the system.

12

Ch.20

Alternative Catalogs

“View types”:
• Module
• Component & Connector
• Alloca:on

Component & connectors:
• Pipe and filter, shared data,

publish subscribe, client-server,
p2p, …

16

Example: Pipes & Filter

17

ISO So&ware Quality Characteris5cs

18

Realizing Quality Attributes

• An architecture must realize the required quality attributes

• Models required that permit reasoning over quality attributes

• Architectural decisions may have to make tradeoff between
conflicting quality attributes

21

Architectural Perspectives
An architectural perspective is a

collection of architectural activities, tactics, and
guidelines

that are used to ensure that a system exhibits a
particular set of related quality properties

that require consideration across a number of the
system’s architectural views.

2
2

Ch.4

23

Ch.4

The arc42.org Template for
Architecture Communication and Documentation

1. Introduc+on and Goals

2. Constraints

3. Context and Scope

The arc42.org Template for
Architecture Communication and Documentation

4. Solution strategy

5. Building block view

6. Run time view

7. Deployment view

8. Crosscutting concepts

9. Architectural decisions

The arc42.org Template for
Architecture Communication and Documentation

10. Quality Requirements

11. Risks and Technical Debt

What Is Technical Debt?

• Ward Cunningham:
• “I coined the debt metaphor to explain

the refactoring that we were doing.”

• Michael Feathers:
• “The refactoring effort needed to add a

feature non invasively”

33

https://www.youtube.com/watch?v=7hL6g1aTGvo

hKp://c2.com/cgi/wiki?WardExplainsDebtMetaphor

https://www.youtube.com/watch?v=7hL6g1aTGvo
http://c2.com/cgi/wiki?WardExplainsDebtMetaphor

Kruchten, 2013:
The (missing) value of software architecture

Learning how to do it

I am in favor of writing code to reflect
your current understanding of a problem

even if that understanding is partial

37
http://c2.com/cgi/wiki?WardExplainsDebtMetaphor

Assessing Technical Debt?

• https://www.sonarqube.org/
• https://www.jarchitect.com/Metrics
• https://github.com/tsantalis/JDeodorant

https://www.sonarqube.org/
https://www.jarchitect.com/Metrics
https://github.com/tsantalis/JDeodorant

Beware: Debt is Relative

• The refactoring effort needed to add a feature (resolve an issue)
non invasively
• Debt depends on features and issues to solve

• Systems are used and society progresses
• New libraries and versions come available
• Actual usage affects our understanding of what matters

• Debt quantifications / visualizations are only useful when they
lead to action. Avoid ranting; propose rational action instead.

39

Microservices

• Small, autonomous services
that work together

• Single Responsibility Principle:
• Gather together those things that

change for the same reason

• Strong cohesion within the service
• Loose coupling among services

40

41

The Role of the Architect

The architect is responsible for designing, documenting, and leading the
construction of a system that meets the needs of all its stakeholders.

44

Fred Brooks: Conceptual Integrity

The quality of a system where all the concepts and their relationships
with each other are applied in a consistent way throughout the system.

Conceptual Integrity is the most important consideration in system
design.

It is better to have […] one set of design ideas,
than [...] many good but independent and uncoordinated ideas.

45

How many Architects?

Conceptual integrity in turn dictates
that the design must proceed from one mind, or from a very small

number
of agreeing resonant minds

46

The Evolutionary Architect

“architects need to shift their thinking away from
creating the perfect end product,

and instead focus on helping create a framework in
which the right systems can emerge,

and continue to grow as we learn more.”

47

Software Architect = Town Planner

• Attempt to optimize the layout of a city
• to best suit the needs of the citizens today,
• taking into account future use

• Cannot foresee everything that will happen.
• Don’t plan for any eventuality,
• Plan to allow for change

48

The Coding Architect?

• Architects must ensure that
systems are ‘habitable’ for developers too.

• Architects must spend time with the team
• Architects must spend time coding

• Pair with a developer
• Beyond code review

• This should be a routine activity

49

