

Self Testing

exercise

observe

observe

exercise

The Java (C, C++, Python, ...)
assert Statement

“assert” boolean-expression [“:” string]

If boolean-expression is true, do nothing.

If it is false, raise an AssertionError,
with the string as message

Assert by Example

public class MyStack() {

public Element pop () {
assert count() > O;

// real method body here

assert count() == oldCount - 1;

}
}

Assertion Checking can be Enabled or Disabled

* Enabling assertions = running application in “self-aware” mode.

* java —enableassertions

* java —ea

* Eclipse: add jvm argument to run configuration

* Maven/IntelliJ: enabled by default when executing tests

* Program must run correctly independent of assertion status!

Assertions Defined

An assertion is a Boolean expression
at a specific point in a program
which will be true
unless there is a bug in the program.

http://wiki.c2.com/?WhatAreAssertions

Pre- and Postconditions

Tony Hoare

* Any execution of A,
e starting in a state where P holds
* will terminate in a state where Q holds

{ preconds } Method { postconds }

Preconditions

public class FavoriteBooks () {

/, \\ List<Book> favorites;
Can you think of ‘e
some pre- public void merge (List<Book> books) {
conditions?
(S /

favorites.addAll (books) ;
pushNotifications.booksAdded (books) ;

}

Preconditions

public class FavoriteBooks () {
List<Book> favorites;

public void merge (List<Book> books) {
assert books !'= null;

favorites.addAll (books) ;
pushNotifications.booksAdded (books) ;

}

Preconditions

public class FavoriteBooks () {
List<Book> favorites;

public void merge (List<Book> books) {
assert books !'= null;
assert !'books.isEmpty () ;

favorites.addAll (books) ;
pushNotifications.booksAdded (books) ;

}

10

Preconditions

public class FavoriteBooks () {
List<Book> favorites;

public void merge (List<Book> books) {
assert books !'= null;
assert !'books.isEmpty () ;

assert favorites != null;

favorites.addAll (books) ;
pushNotifications.booksAdded (books) ;

}

11

Preconditions

public class FavoriteBooks () {
List<Book> favorites;

public void merge (List<Book> books) {
assert books !'= null;
assert !'books.isEmpty () ;
assert favorites '= null;
assert !favorites.containsAll (books) ;

favorites.addAll (books) ;
pushNotifications.booksAdded (books) ;

12

Weakening Preconditions

public class FavoriteBooks () {
List<Book> favorites;

public void merge (List<Book> books) {
assert books !'= null;
assert favorites '= null;
assert !favorites.containsAll (books) ;

if ('books.isEmpty()) {
favorites.addAll (books) ;
pushNotifications.booksAdded (books) ;

}h}

13

Weakening Preconditions

public class FavoriteBooks () {
List<Book> favorites;

public void merge (List<Book> books) {
assert books != null;
assert favorites != null;

// logic to find new books only
List<Book> newBooks = ... (books);

if (!'newBooks.isEmpty()) {
favorites.addAll (newBooks) ;
pushNotifications.booksAdded(...) ;

}h}

14

Precondition Design

* “Strength” of preconditions is a design choice.

* The weaker your precondition
* The more situations your method needs to handle
* The less thinking the client needs to do

 However, with weak preconditions:

* The method will always have to do the checking
* Checks even done if we're sure they’ll pass.

15

Postconditions

public class FavoriteBooks () {
List<Book> favorites;

public void merge (List<Book> books) {
// assert four preconditions

// the method body

// the postcondition.

16

Postconditions

public class FavoriteBooks () {
List<Book> favorites;

public void merge (List<Book> books) {
// assert four preconditions

// the method body

// the postcondition.
assert favorites.containsaAll (books) ;

H}

17

Multiple exit paths?

Overall postcondition =
Disjunction (OR’ed) of
multiple smaller post-
conditions

Composite Postconditions

if (A)

if (B) |

A&&B? PCl
assert PC1l

return ...

L oo § A&& IB? PC2

assert PC2 IA? PC3
return ...;

}
}

assert PC3
return ...;

18

Postcondition Design

* Postcondition holds after method execution

* Represents (part of) the desirable effect the
method should have

* Method guarantees its postcondition
e as long as caller meets its preconditions.

* With weak preconditions?

* Multiple postconditions guarded by conditions
over the inputs or program state.

19

Invariants

Invariant:

A condition that holds

throughout the lifetime

of a system, an object,
or a data-structure.

20

Two Invariant Idioms for
Checking Representations

* Implementing a non-trivial data structure?

* Create a representation checker (“checkRep”)
* that traverses the entire structure
* and asserts everything it can.

 Alternative: offer Boolean method (“repOK”)
e Return a single value indicating whether the data structure is in a consistent state

21

checkRep by Example:
Red-Black Tree Consistency

/* the tree order must be respected x/
/* parents and children must point to each other x/
if (node->left != t->nil) {
int tmp = t->Compare (node->key, node->left->key);
assert (tmp==0 tmp==1);
}
if (node->right !'= t->nil) {

Parents of children of a
node are the same as
that node

int tmp = t->Compare (node->key, node->right->key)
assert (tmp==0 tmp==-1);
assert (node->right->parent == node);
}
if (node—>left != t->nil && node—>right != t->nil) {
int tmp = t->Compare (node->left->key, node->right->key);

Nodes are well sorted assert (tmp==0 || tmpe=—1);

22
https://blog.regehr.org/archives/1091

Class Invariant Rule

Assertion P is a class invariant for class Cif:

* All public methods and constructors of C,

* when applied to arguments satisfying the
methods precondition,

* yield a state satisfying P.

23

Asserting Class Invariants

* “repOK” idiom at class level.

* Boolean “invariant()” method

e Assert after constructor
* Assert at start and end of any public method

24

Defining Invariants

public class FavoriteBooks () {
List<Book> favorites;
List<Listeners> pushNotifications;

protected boolean invariant () ({
return
favorites !'= null &&
pushNotifications !'= null

}

25

Invariant at
Constructor End

public class FavoriteBooks () {

protected boolean invariant() { ...
public FavoriteBooks(...) {
favorites = ...

pushNotifications = ...

assert invariant() ;

}

26

/

"

Some pre-conditions
now have moved to
invariant

\

)

/

"

Invariant = pre- and
postcondition shared
by all methods

\

)

Invariant at Method
Start and Enc

public class FavoriteBooks() {
protected boolean invariant() {
public merge (List<Book> books) {

assert invariant() ;
// assert remaining pre-conditions

// assert remaining post-conditions
assert invariant() ;

}

27

-

(U

For your own
classes: Learn to
think in terms of

invariants!

"

Tree Invariants

public class Node() {
Node left;

Node right;

Node parent;

protected boolean invariant() ({
return parentsOK() && orderingOK() ;

}

private boolean parentsOK() ({
return
(left == null || left.parent == this) &&
(right == null || right.parent == this)

28

Intermezzo: @NotNull

@NotNull

The @NotNull annotation is, actually, an explicit contract declaring that:
- A method should not return null
- Variables (fields, local variables, and parameters) cannot hold a null value

Intelli) IDEA warns you if these contracts are violated.

Intermezzo: @Nullable

@Nullable

The @Nullable annotation helps you detect:

- Method calls that can return null

- Variables (fields, local variables, and parameters), that can be null

30

Replacing Null-Checking
Preconditions with @NotNull

public class FavoriteBooks () {
@NotNull List<Book> favorites = ...

public void merge (@NotNull List<Book> books) {
assert 'books.isEmpty() ;
assert !'favorites.containsAll (books) ;

favorites.addAll (books) ;
pushNotifications.booksAdded (books) ;

}

31

Interfaces as Contracts

* A client and a server are bound by a contract

* The server promises to do its job
* Defined by the postconditions

* As long as the client uses the server correctly
* Defined by the pre-conditions

Bertrand Meyer
Design by Contract

32

A

If you (as a client) invoke a (server) method and meet its preconditions,
the server guarantees the postcondition will hold.

e

Examples: File has been crated; Books have been added
Points have been added; Result is never null;

33

If you (as a client) invoke a (server) method without meeting its preconditions,
anything can happen.

E.g.: Null pointer
exception

Proposition Strength

* Pis stronger than Q

* Pimplies Q

35

Subcontracting

Interface

Invariant: |
{PIM{Q}

1

Implementation

Invariant: I’

{PPIM{Q"}

36

Subcontracting dictates
relative strength of P/P’, 1/I’, Q/Q’

* Postcondition Q'

e Stronger than Q. Invariant: |
{PIM{Q}

e Fnsure no less

* Precondition P’
e Weaker than P

. Implementation
* Require no more

Invariant: I’

* |[nvariant | (PIM{Q)

e Stronger than |

The Liskov Substitution Principle

If you use a class T,
you should be allowed

to substitute T
by any subclass of Sof T

Sub-contracting formalizes this principle

't,

class T

Invariant: |
{PIM{Q}

class S

Invariant: I’
{PPIM{Q}

38

Design By Contract

* Interface is a contract
* Ensures (promises) certain effects will happen
* Provided certain assumptions are true

* Its implementation is a subcontract
* Promises at least the same effects
* Under at most the same assumptions
* “Require no more; Ensure no less”

* Formalize with assertions

39

Testing for LSP Compliance

java.util. concurrent. BlockingQueue
java.util. concurrent. BlockingDeque

(java.util. Deque

Jjava.util. concurrent. LinkedBlockingDeque

Jjava.util Queue

java.util AbstractQueue

Java.util ArrayDeque

Jjava.util LinkedList

java.util. AbstractSequentialList Jjava.util AbstractList @ javalang Iterable

Jjava.util HashSet

i java.util AbstractSet
Jjava.util TreeSet

Jjava.util. concurrent. ConcurrentSkipListSet java.lang. Object

Jjava.util Hashtable

HashTable

q . java.util WeakHas]
java.util. concurrent. ConcurrentSkipListMap Java.util TreeMap J 1

. i java.util. SortedMap
java.util. concurrent. ConcurrentNavigableMap
java.util. concurrent. ConcurrentMap

40

Example Class Hierarchy

containskey()

i Weak
HashMap Hashtable - HashMap

Testing Subclasses

containskey()

HashMap

Hashtable

Weak
HashMap

Weak
HashMap
Test

Hashtable
Test

HashMap
Test

Testing The Superclass

containsKey()

i Weak
HashMap Hashtable - HashMap

A Parallel Hierarchy for Testing

HashMap

Weak
HashMap

Weak
HashMap
Test

HashTable

Hashtable
Test

HashMap
Test

John McGregor: A Parallel Architecture for Class Testing (PACT)

Using Factory Methods

---------------- MapTest

containskey()
createMap ----

Weak
HashTable - HashMap

HashTable WeakHash

HashMap

Test Test MapTest

HashMap
Test
.\\ returns
HashTable

createMap

Testing for LSP Compliance

* Design test suite T at (top) interface level
* Reuse for all interface implementations

 Specific implementation may require
additional tests, but should at least meet T.

Robert Binder (2000): “Polymorphic Server Test”

46

4.1.5

Oracle

Test Design Includes

that applies @ pass/fail criterionto @ progra

m execution is

ugoftware
called @ (test) oracle”.

2. Self checks (“P
"Reasonab\ene

3. Version comparisons

ss check’)

Test Oracles

“Software th
at applie
to a s a pass/fail criteri
pr,?gram execution is criterion
oracle”. called a (teSt)

Approaches
1. Value comparison

2. Property checks

3. :
Version comparisons

47

In Code Assertions as Oracles

* Enable run time assertion checking during testing
e Post-conditions check method outcomes
* Pre-conditions check correct method usage
* |Invariants check object health

* Run time assertions increase fault sensitivity
* Increase likelihood program fails if there is a fault
e Desirable during testing!

48

Assertions don’t Replace Testing

* Unit tests still needed to exercise methods
* In code assertions only check general properties

* In code assertions on top of asserts with concrete expected values in tests

49

Assertions Inspire Testing

e Test inputs should reach assertions

* Assertions may be disjunction P1 or P2
e Test inputs should trigger both alternatives

* Assertions may contain boundaries
e Test inputs should trigger those boundaries

50

Assertions Don’t Fail

e Test inputs can reach assertions

* Test inputs cannot make assertions fail
* That would be a bug in the program!

* No need to write test cases that let pre-conditions fail
 Method behavior undefined !

51

Property-Based Testing

* Think of “properties” (assertions) for functions
* Let “generator” produce series of random input values for function

* For each random input check the assertions.

52

import com.pholser.junit.quickcheck.Property;
import com.pholser.junit.quickcheck.runner.JUnitQuickcheck;
import org.junit.runner.RunWith;

import static org.junit.Assert.x; Quickcheck generates 100

random strings to check

@RunWith(JUnitQuickcheck.class) :
public class StringPropertiesTest { this property.

@Property
public void concatenationLength(String s1, String s2) {
assertEquals(
s1.length() + s2.length(),
(s1 + s2).length());

Property: length of concatenated strings

equals sum of length of individual strings
53

package com.pholser.junit.quickcheck.examples.crypto;

import ...

@RunWith(JUnitQuickcheck.class)
public class SymmetricKeyCryptoPropertiesTest {

@Property

public void decryptReversesEncrypt(
@InCharset("UTF-8") String plaintext,
Key key)
throws Exception {

SymmetricCrypto crypto = new SymmetricCrypto();

EncryptionResult enciphered =
crypto.encrypt(plaintext.getBytes("UTF-8"), key);

assertEquals(
plaintext,
new String(crypto.decrypt(enciphered, key)));

54

QuickCheck Ingredients

* Property specification language / library
* Data input generator for range of data types
* Mechanism to write your own data generators

* Mechanism to constrain data generated (junit assume)

* Shrinking process to reduce inputs for failing tests to smallest data

55

Automated Self-Testing

 Random input generation:
* Exercise system in variety of ways
* Clever generators for specific data types

* Whole test suite perspective:
* Maximize coverage achieved by inputs
e Capture in fitness function
e Evolutionary search for fittest test suite

* Properties, contracts, assertions:
* The oracle distinguishing success from failure

56

QUESTION 15
B%A Hm%B m%C m%D Hblank

Mid-Term Question 15

Which of the following statements is correct about
the relationship between specification-based
testing and structural testing?

A. Boundary analysis can only be done if testers have access to the source
code, and thus, it should be considered a structural testing technique.

B. Model-based testing is a structural testing technique.

Z> C. None of the other answers is true.

D. If we take costs into account, a testing process should then prioritize
structural testing because it’s cheaper and yet highly effective.

57

Mid-Term Question 23

* You implement a decision table directly via if-then-else logic in your code.
For which of the following decision table testing strategies are you

guaranteed to achieve 100% branch coverage of the corresponding
decision logic in your code?

QUESTION 23
H%A EM%B m%C M%D Hblank

s=>»A. All possible variants
B. Each condition

MC/DC

D. All explicit variants

Mid-Term Question 33

A static analysis checking a non-trivial property is typically:

A. Sound but Imprecise QUESTION 33
B%A M%B E%C M%D Mblank

o8

Unsound and Imprecise
C. Sound and Precise
D. Unsound but Precise

rive / Negalive

False POSI

. Many static analysis tools

« Correct negalive: No warning,

C'S'O“ e False positive: Warning, pbut not
« False negative: Problem, but no

Poor Recall

ng @)

a problem (annoyi
dangerous ®)

warning (poss’\b\y

Full Recall

Completeness

Full Precisi
ision _ No false alarms (0 FPs)
yulnerability found

_ Raises an alarm —

dness t TComp\eteness
s or FNs

Static Analysis Uses Terminology from Logic

* We want to prove that bad property X (e.g. injection attack) cannot occur

* Soundness:
* A sound logic proves only true things
* The conclusion “X cannot occur” can be trusted.
* No false negatives — full recall.

* Completeness:
* A complete logic proves all true things

* The conclusion “X cannot occur” will be drawn for all programs for which this is true
* In other words: The conclusion “X can occur” can be trusted (and should be acted upon).

* No false positives — full precision.

62
https://courses.cs.washington.edu/courses/cse341/13wi/unitbnotes.pdf

https://courses.cs.washington.edu/courses/cse341/13wi/unit6notes.pdf

Question 40

Regarding the boundary analysis technique discussed in lecture, which of the

following statements is true?

A. There can only be a single on-point which always n true.

There can[_be one or two off points | which may or ma
false.

the condition

There can be multiple on-points for a given con¢/
make the condition true.

ay not

There can be multiple off-points for a given condi
condition false.

n which always-fhake the

63

* A problem is decidable if there exists an algorithm to solve it that is sound,
complete, and terminating.

* Soundness means that the algorithm never returns “yes” when it shouldn’t

 Completeness means it always returns “yes” when it should.

64

Outlook

* Lectures:
* Annibale Panichella (fuzzing, search-based testing)
* Tim van der Lippe (open source)
» Stéphane Nicoll (Pivotal, Spring)

* Reviewing part 2
e Labwork part 3
* Exam

77

