
Self Testing

CSE1110
Software Testing &
Quality Engineering

Arie van Deursen
June 7, 2019

1

System Test Suite

exercise

Self-checks
observe

Daily Use

exercise

Operations

observe

Self Testing

2

The Java (C, C++, Python, …)
assert Statement

If boolean-expression is true, do nothing.

If it is false, raise an AssertionError,
with the string as message

“assert” boolean-expression [“:” string]

3

Assert by Example

public class MyStack() {

public Element pop() {
assert count() > 0;
....
// real method body here
....
assert count() == oldCount – 1;

}
}

4

Assertion Checking can be Enabled or Disabled

• Enabling assertions = running application in “self-aware” mode.

• java –enableassertions
• java –ea
• Eclipse: add jvm argument to run configuration
• Maven/IntelliJ: enabled by default when executing tests

• Program must run correctly independent of assertion status!

5

Assertions Defined

An assertion is a Boolean expression
at a specific point in a program

which will be true
unless there is a bug in the program.

http://wiki.c2.com/?WhatAreAssertions

6

Pre- and Postconditions

• Any execution of A,
• starting in a state where P holds
• will terminate in a state where Q holds

{ P } A { Q }

{ preconds } Method { postconds }

Tony Hoare

7

Preconditions

public class FavoriteBooks() {
List<Book> favorites;
...
public void merge(List<Book> books) {

favorites.addAll(books);
pushNotifications.booksAdded(books);

}
}

8

Can you think of
some pre-

conditions?

public class FavoriteBooks() {
List<Book> favorites;
...
public void merge(List<Book> books) {
assert books != null;

favorites.addAll(books);
pushNotifications.booksAdded(books);

}
}

Preconditions

9

public class FavoriteBooks() {
List<Book> favorites;
...
public void merge(List<Book> books) {
assert books != null;
assert !books.isEmpty();

favorites.addAll(books);
pushNotifications.booksAdded(books);

}
}

Preconditions

10

public class FavoriteBooks() {
List<Book> favorites;
...
public void merge(List<Book> books) {
assert books != null;
assert !books.isEmpty();
assert favorites != null;

favorites.addAll(books);
pushNotifications.booksAdded(books);

}
}

Preconditions

11

public class FavoriteBooks() {
List<Book> favorites;
...
public void merge(List<Book> books) {
assert books != null;
assert !books.isEmpty();
assert favorites != null;
assert !favorites.containsAll(books);
...
favorites.addAll(books);
pushNotifications.booksAdded(books);

}
}

Preconditions

12

public class FavoriteBooks() {
List<Book> favorites;
...
public void merge(List<Book> books) {
assert books != null;
assert favorites != null;
assert !favorites.containsAll(books);
...
if (!books.isEmpty()) {
favorites.addAll(books);
pushNotifications.booksAdded(books);

}}}

Weakening Preconditions

13

public class FavoriteBooks() {
List<Book> favorites;
...
public void merge(List<Book> books) {
assert books != null;
assert favorites != null;

// logic to find new books only
List<Book> newBooks = ... (books);

if (!newBooks.isEmpty()) {
favorites.addAll(newBooks);
pushNotifications.booksAdded(...);

}}}

Weakening Preconditions

14

Precondition Design

• “Strength” of preconditions is a design choice.

• The weaker your precondition
• The more situations your method needs to handle
• The less thinking the client needs to do

• However, with weak preconditions:
• The method will always have to do the checking
• Checks even done if we’re sure they’ll pass.

15

public class FavoriteBooks() {
List<Book> favorites;
...
public void merge(List<Book> books) {
// assert four preconditions
...
// the method body
...
// the postcondition.
...??

}}

Postconditions

16

public class FavoriteBooks() {
List<Book> favorites;
...
public void merge(List<Book> books) {
// assert four preconditions
...
// the method body
...
// the postcondition.
assert favorites.containsAll(books);

}}

Postconditions

17

Composite Postconditions

Multiple exit paths?

Overall postcondition =
Disjunction (OR’ed) of
multiple smaller post-
conditions

18

if (A) {
...
if (B) {
...
assert PC1
return ...;

} else {
...
assert PC2
return ...;

}
}
...
assert PC3
return ...;

A && B ? PC1

A && !B ? PC2

!A ? PC3

Postcondition Design

• Postcondition holds after method execution
• Represents (part of) the desirable effect the

method should have

• Method guarantees its postcondition
• as long as caller meets its preconditions.

• With weak preconditions?
• Multiple postconditions guarded by conditions

over the inputs or program state.

19

Invariants

Invariant:

A condition that holds
throughout the lifetime
of a system, an object,

or a data-structure.

20

Two Invariant Idioms for
Checking Representations
• Implementing a non-trivial data structure?

• Create a representation checker (“checkRep”)
• that traverses the entire structure
• and asserts everything it can.

• Alternative: offer Boolean method (“repOK”)
• Return a single value indicating whether the data structure is in a consistent state

21

checkRep by Example:
Red-Black Tree Consistency

https://blog.regehr.org/archives/1091
22

Parents of children of a
node are the same as

that node

Nodes are well sorted

Class Invariant Rule

Assertion P is a class invariant for class C if:

• All public methods and constructors of C,
• when applied to arguments satisfying the

methods precondition,
• yield a state satisfying P.

23

Asserting Class Invariants

• “repOK” idiom at class level.

• Boolean “invariant()” method
• Assert after constructor
• Assert at start and end of any public method

24

Defining Invariants

public class FavoriteBooks() {
List<Book> favorites;
List<Listeners> pushNotifications;

protected boolean invariant() {
return
favorites != null &&
pushNotifications != null

}

...
}

25

Invariant at
Constructor End

public class FavoriteBooks() {
...

protected boolean invariant() { ... }

public FavoriteBooks(...) {
favorites = ...
pushNotifications = ...
...
assert invariant();

}
...

}

26

Invariant at Method
Start and End

public class FavoriteBooks() {
...
protected boolean invariant() { ... }

public merge(List<Book> books) {
assert invariant();
// assert remaining pre-conditions
...
// assert remaining post-conditions
assert invariant();

}
}

27

Some pre-conditions
now have moved to

invariant

Invariant = pre- and
postcondition shared

by all methods

Tree Invariants
public class Node() {
Node left;
Node right;
Node parent;
...
protected boolean invariant() {
return parentsOK() && orderingOK();

}

private boolean parentsOK() {
return
(left == null || left.parent == this) &&
(right == null || right.parent == this)

}
}

28

For your own
classes: Learn to
think in terms of

invariants!

Intermezzo: @NotNull

29

Intermezzo: @Nullable

30

public class FavoriteBooks() {
@NotNull List<Book> favorites = ...
...
public void merge(@NotNull List<Book> books) {
assert !books.isEmpty();
assert !favorites.containsAll(books);
...
favorites.addAll(books);
pushNotifications.booksAdded(books);

}
}

Replacing Null-Checking
Preconditions with @NotNull

31

Interfaces as Contracts

• A client and a server are bound by a contract

• The server promises to do its job
• Defined by the postconditions

• As long as the client uses the server correctly
• Defined by the pre-conditions

32

Bertrand Meyer
Design by Contract

Examples: File has been crated; Books have been added
Points have been added; Result is never null;

If you (as a client) invoke a (server) method and meet its preconditions,
the server guarantees the postcondition will hold.

33

If you (as a client) invoke a (server) method without meeting its preconditions,
anything can happen.

E.g.: Null pointer
exception34

Proposition Strength

• P is stronger than Q

• P implies Q

35

Subcontracting

Invariant: I
{ P } M { Q }

Interface

Invariant: I’
{ P’ } M { Q’ }

Implementation

36

Subcontracting dictates
relative strength of P/P’, I/I’, Q/Q’

• Postcondition Q’
• Stronger than Q.
• Ensure no less

• Precondition P’
• Weaker than P
• Require no more

• Invariant I’
• Stronger than I

37

The Liskov Substitution Principle

If you use a class T,
you should be allowed
to substitute T
by any subclass of S of T

Sub-contracting formalizes this principle

38

Invariant: I
{ P } M { Q }

class T

Invariant: I’
{ P’ } M { Q’ }

class S

Design By Contract

• Interface is a contract
• Ensures (promises) certain effects will happen
• Provided certain assumptions are true

• Its implementation is a subcontract
• Promises at least the same effects
• Under at most the same assumptions
• “Require no more; Ensure no less”

• Formalize with assertions

39

Testing for LSP Compliance

Map

HashTable

HashMap

AbstractMap

40

Map
containsKey()

HashMap Hashtable Weak
HashMap...

Example Class Hierarchy

41

Map
containsKey()

HashMap Hashtable Weak
HashMap...

HashMap
Test

Hashtable
Test

Weak
HashMap

Test

...
Test

Testing Subclasses

42

Map
containsKey()

HashMap Hashtable Weak
HashMap...

MapTest

Testing The Superclass

43

Map
containsKey()

HashMap HashTable Weak
HashMap...

HashMap
Test

Hashtable
Test

Weak
HashMap

Test

MapTest

...
Test

A Parallel Hierarchy for Testing

John McGregor: A Parallel Architecture for Class Testing (PACT)44

Map
containsKey()

HashMap HashTable Weak
HashMap...

HashMap
Test

createMap

HashTable
Test

createMap

WeakHash
MapTest
createMap

MapTest

createMap

...
Test

returns
Map

returns
HashTable

Using Factory Methods

45

Testing for LSP Compliance

• Design test suite T at (top) interface level

• Reuse for all interface implementations

• Specific implementation may require
additional tests, but should at least meet T.

Robert Binder (2000): “Polymorphic Server Test”
46

Test Oracles

“Software that applies a pass/fail criterion
to a program execution is called a (test)
oracle”.

Approaches
1. Value comparison
2. Property checks
3. Version comparisons

47

In Code Assertions as Oracles

• Enable run time assertion checking during testing
• Post-conditions check method outcomes
• Pre-conditions check correct method usage
• Invariants check object health

• Run time assertions increase fault sensitivity
• Increase likelihood program fails if there is a fault
• Desirable during testing!

48

Assertions don’t Replace Testing

• Unit tests still needed to exercise methods

• In code assertions only check general properties

• In code assertions on top of asserts with concrete expected values in tests

49

Assertions Inspire Testing

• Test inputs should reach assertions

• Assertions may be disjunction P1 or P2
• Test inputs should trigger both alternatives

• Assertions may contain boundaries
• Test inputs should trigger those boundaries

50

Assertions Don’t Fail

• Test inputs can reach assertions

• Test inputs cannot make assertions fail
• That would be a bug in the program!

• No need to write test cases that let pre-conditions fail
• Method behavior undefined !

51

Property-Based Testing

• Think of ”properties” (assertions) for functions

• Let “generator” produce series of random input values for function

• For each random input check the assertions.

52

Property: length of concatenated strings
equals sum of length of individual strings

Quickcheck generates 100
random strings to check

this property.

53

54

QuickCheck Ingredients

• Property specification language / library

• Data input generator for range of data types
• Mechanism to write your own data generators
• Mechanism to constrain data generated (junit assume)

• Shrinking process to reduce inputs for failing tests to smallest data

55

Automated Self-Testing

• Random input generation:
• Exercise system in variety of ways
• Clever generators for specific data types

• Whole test suite perspective:
• Maximize coverage achieved by inputs
• Capture in fitness function
• Evolutionary search for fittest test suite

• Properties, contracts, assertions:
• The oracle distinguishing success from failure

56

Mid-Term Question 15

Which of the following statements is correct about
the relationship between specification-based
testing and structural testing?

A. Boundary analysis can only be done if testers have access to the source
code, and thus, it should be considered a structural testing technique.

B. Model-based testing is a structural testing technique.
C. None of the other answers is true.
D. If we take costs into account, a testing process should then prioritize

structural testing because it’s cheaper and yet highly effective.
57

Mid-Term Question 23

• You implement a decision table directly via if-then-else logic in your code.
For which of the following decision table testing strategies are you
guaranteed to achieve 100% branch coverage of the corresponding
decision logic in your code?

A. All possible variants
B. Each condition
C. MC/DC
D. All explicit variants

58

Mid-Term Question 33

A static analysis checking a non-trivial property is typically:

A. Sound but Imprecise
B. Unsound and Imprecise
C. Sound and Precise
D. Unsound but Precise

59

60

Poor Precision

Poor Recall

61

Full Precision

Full Recall

Static Analysis Uses Terminology from Logic

• We want to prove that bad property X (e.g. injection attack) cannot occur
• Soundness:
• A sound logic proves only true things
• The conclusion “X cannot occur” can be trusted.
• No false negatives – full recall.

• Completeness:
• A complete logic proves all true things
• The conclusion “X cannot occur” will be drawn for all programs for which this is true

• In other words: The conclusion “X can occur” can be trusted (and should be acted upon).
• No false positives – full precision.

62
https://courses.cs.washington.edu/courses/cse341/13wi/unit6notes.pdf

https://courses.cs.washington.edu/courses/cse341/13wi/unit6notes.pdf

Question 40

Regarding the boundary analysis technique discussed in lecture, which of the
following statements is true?

A. There can only be a single on-point which always makes the condition true.
B. There can only be a single off-point which may or may not make the condition

false.
C. There can be multiple on-points for a given condition which may or may not

make the condition true.
D. There can be multiple off-points for a given condition which always make the

condition false.

63

be one or two off points

QUESTION DISCARDED

• A problem is decidable if there exists an algorithm to solve it that is sound,
complete, and terminating.
• Soundness means that the algorithm never returns “yes” when it shouldn’t
• Completeness means it always returns “yes” when it should.

64

Outlook

• Lectures:
• Annibale Panichella (fuzzing, search-based testing)
• Tim van der Lippe (open source)
• Stéphane Nicoll (Pivotal, Spring)

• Reviewing part 2

• Labwork part 3

• Exam

77

