
1

Security Testing
Checking for what shouldn’t happen

Azqa Nadeem
PhD Student @ Cyber Security Group

The Cyber Security lecture series 



2

Agenda for today

• Part I

– Latest security news 

– Security vulnerabilities in Java

– Types of Security testing

• SAST vs. DAST

• Part II

– SAST under the hood

• Pattern Matching

• Control Flow Analysis

• Data Flow Analysis

– SAST Tools performance



3

Announcements

• Assignment 2 – Security module

• Exam questions



4



5

Agenda for today

• Part I

– Latest security news 

– Security vulnerabilities in Java

– Types of Security testing

• SAST vs. DAST

• Part II

– SAST under the hood

• Pattern Matching

• Control Flow Analysis

• Data Flow Analysis

– SAST Tools performance



6

Software testing

vs.

Security testing



7

Impact – Stolen chats

https://ivan.barreraoro.com.ar/signal-desktop-html-tag-injection/

https://ivan.barreraoro.com.ar/signal-desktop-html-tag-injection/


8

Impact – Stolen chats

https://ivan.barreraoro.com.ar/signal-desktop-html-tag-injection/

https://ivan.barreraoro.com.ar/signal-desktop-html-tag-injection/


9

Impact – Github down

https://thehackernews.com/2018/03/biggest-ddos-attack-github.html

https://thehackernews.com/2018/03/biggest-ddos-attack-github.html


10

Impact – Github down

https://thehackernews.com/2018/03/biggest-ddos-attack-github.html

Caused by misconfigured Memcached 

servers

https://thehackernews.com/2018/03/biggest-ddos-attack-github.html


11

Is Java Secure?

• Secure from memory corruption

• … but not completely

• Potential targets

– Java Virtual Machine

– Libraries in native code

https://w3techs.com/technologies/details/pl-java/all/all

https://w3techs.com/technologies/details/pl-java/all/all


12

Vulnerability databases

• OWASP Top Ten project

– Awareness document

– Web application security

• NIST National Vulnerability Database

– U.S govt. repository

– General security flaws



13

JRE vulnerabilities

https://www.cvedetails.com/product/19116/Oracle-JDK.html?vendor_id=93

https://www.cvedetails.com/product/19116/Oracle-JDK.html?vendor_id=93


14

JRE vulnerabilities

https://www.cvedetails.com/product/19116/Oracle-JDK.html?vendor_id=93

https://www.cvedetails.com/product/19116/Oracle-JDK.html?vendor_id=93


15

Some Examples



16

What’s wrong?



17

Code Injection vulnerability

• Execute code in unauthorized applications

• Victim to Update Attack



18

Code Injection vulnerability

• Execute code in unauthorized applications

• Victim to Update Attack



19

Code Injection vulnerability

• Execute code in unauthorized applications

• Victim to Update Attack



20

Code Injection vulnerability

• Execute code in unauthorized applications

• Victim to Update Attack



21

Code Injection vulnerability

• Execute code in unauthorized applications

• Victim to Update Attack



22

Code Injection vulnerability

• Execute code in unauthorized applications

• Victim to Update Attack



23

Code Injection vulnerability

• Execute code in unauthorized applications

• Victim to Update Attack

• Top vulnerability in OWASP Top 10



24

Code Injection vulnerability

• Execute code in unauthorized applications

• Victim to Update Attack

• Top vulnerability in OWASP Top 10

• Tricky to fix

– Stop adding plugins

– Limit privileges 



25

Type confusion vulnerability

https://www.thezdi.com/blog/2018/4/25/when-java-throws-you-a-lemon-make-limenade-sandbox-escape-by-type-confusion

https://www.thezdi.com/blog/2018/4/25/when-java-throws-you-a-lemon-make-limenade-sandbox-escape-by-type-confusion


26

Type confusion vulnerability

https://www.thezdi.com/blog/2018/4/25/when-java-throws-you-a-lemon-make-limenade-sandbox-escape-by-type-confusion

https://www.thezdi.com/blog/2018/4/25/when-java-throws-you-a-lemon-make-limenade-sandbox-escape-by-type-confusion


27

Bypassing Java Security Manager

• Exploit Type confusion vulnerability

https://access.redhat.com/security/cve/cve-2014-3558

https://access.redhat.com/security/cve/cve-2014-3558


28

Bypassing Java Security Manager

• Exploit Type confusion vulnerability

https://access.redhat.com/security/cve/cve-2014-3558

Java 

Security 

Manager

https://access.redhat.com/security/cve/cve-2014-3558


29

Bypassing Java Security Manager

• Exploit Type confusion vulnerability

https://access.redhat.com/security/cve/cve-2014-3558

Java 

Security 

Manager

https://access.redhat.com/security/cve/cve-2014-3558


30

Bypassing Java Security Manager

• Exploit Type confusion vulnerability

• Escalated privileges

https://access.redhat.com/security/cve/cve-2014-3558

Java 

Security 

Manager

https://access.redhat.com/security/cve/cve-2014-3558


31

Bypassing Java Security Manager

• Exploit Type confusion vulnerability

• Escalated privileges

https://access.redhat.com/security/cve/cve-2014-3558

Java 

Security 

Manager

https://access.redhat.com/security/cve/cve-2014-3558


32

Bypassing Java Security Manager

• Exploit Type confusion vulnerability

• Escalated privileges

– Set JSM to null

https://access.redhat.com/security/cve/cve-2014-3558

Java 

Security 

Manager

https://access.redhat.com/security/cve/cve-2014-3558


33

Bypassing Java Security Manager

• Vulnerable: Hibernate → Reflection helper 

• Exploit Type confusion vulnerability

• Escalated privileges

– Set JSM to null

https://access.redhat.com/security/cve/cve-2014-3558

Java 

Security 

Manager

https://access.redhat.com/security/cve/cve-2014-3558


34

Arbitrary Code Execution (ACE) 

• Vulnerable: XStream → Converts XML to Object

• Deserialization vulnerability

https://access.redhat.com/security/cve/cve-2013-7285

https://access.redhat.com/security/cve/cve-2013-7285


35

Arbitrary Code Execution (ACE) 

• Vulnerable: XStream → Converts XML to Object

• Deserialization vulnerability

https://access.redhat.com/security/cve/cve-2013-7285

https://access.redhat.com/security/cve/cve-2013-7285


36

Arbitrary Code Execution (ACE) 

• Vulnerable: XStream → Converts XML to Object

• Deserialization vulnerability

https://access.redhat.com/security/cve/cve-2013-7285

https://access.redhat.com/security/cve/cve-2013-7285


37

Arbitrary Code Execution (ACE) 

• Vulnerable: XStream → Converts XML to Object

• Deserialization vulnerability

– Via malicious input XML

https://access.redhat.com/security/cve/cve-2013-7285

https://access.redhat.com/security/cve/cve-2013-7285


38

Arbitrary Code Execution (ACE) 

• Vulnerable: XStream → Converts XML to Object

• Deserialization vulnerability

– Via malicious input XML

https://access.redhat.com/security/cve/cve-2013-7285

https://access.redhat.com/security/cve/cve-2013-7285


39

Remote Code Execution (RCE)

https://pivotal.io/security/cve-2018-1273

https://pivotal.io/security/cve-2018-1273


40

Remote Code Execution (RCE)

https://pivotal.io/security/cve-2018-1273

https://pivotal.io/security/cve-2018-1273


41

Remote Code Execution (RCE)

https://pivotal.io/security/cve-2018-1273

https://pivotal.io/security/cve-2018-1273


42

Remote Code Execution (RCE)

• Spring Data Commons → DB connections

• Property binder vulnerability

– Via specially crafted request parameters

https://pivotal.io/security/cve-2018-1273

https://pivotal.io/security/cve-2018-1273


43
https://www.waratek.com/alert-oracle-guidance-cpu-april-2018/

https://www.waratek.com/alert-oracle-guidance-cpu-april-2018/


44

Why test for security?

Attack surface

Exploit

• Security testing → Non-functional testing

• Who’s job is to test for security?



45https://www.dignitasdigital.com/blog/easy-way-to-understand-sdlc/

When to test for security?

Risk assessment & 

Abuse cases

Threat 

modelling

Design for 

security

Secure 

implementation
Security testing & 

Code reviews

Patching & 

Updating

SECURE

https://www.dignitasdigital.com/blog/easy-way-to-understand-sdlc/


46

Classes of Security Testing

• Manual vs. Automated Testing

Manual Automated



47

Classes of Security Testing

• Manual vs. Automated Testing

• Static vs. Dynamic Testing

Manual Automated

Static Dynamic



48

Classes of Security Testing

• Manual vs. Automated Testing

• Static vs. Dynamic Testing

• Black vs. White box Testing

Manual Automated

Static Dynamic Blackbox Whitebox



49

Classes of Security Testing

• Manual vs. Automated Testing

• Static vs. Dynamic Testing

• Black vs. White box Testing

Manual Automated

Static Dynamic Blackbox Whitebox

Reverse 

Engineering

Risk 

Analysis

Code 

checking

Tainting Fuzzing
Dynamic 

validation

Penetration 

testing



50

Manual vs. Automated Testing

• Manual

– Code reviews

– Efficient use of human expertise

– Labour intensive



51

Manual vs. Automated Testing

• Manual

– Code reviews

– Efficient use of human expertise

– Labour intensive

• Automated

– Automated code checking

– Can check MLOC in seconds

– Incomparable to human expertise



52

Classes of Security Testing

• Manual vs. Automated Testing

• Static vs. Dynamic Testing

• Black vs. White box Testing

Manual Automated

Static Dynamic Blackbox Whitebox

Reverse 

Engineering

Risk 

Analysis

Code 

checking

Tainting Fuzzing
Dynamic 

validation

Penetration 

testing



53

Static vs. Dynamic Testing

• (Automated) Static analysis

– Code review by computers

– Checks all possible code paths

– Relatively easy to extract results

– Limited capabilities



54

Static vs. Dynamic Testing

• (Automated) Static analysis

– Code review by computers

– Checks all possible code paths

– Relatively easy to extract results

– Limited capabilities

• Dynamic analysis

– Execute code and observe behaviour

– Checks functional code paths only

– Much advanced analysis

– Difficult to set up



55

Classes of Security Testing

• Manual vs. Automated Testing

• Static vs. Dynamic Testing

• Black vs. White box Testing

Manual Automated

Static Dynamic Blackbox Whitebox

Reverse 

Engineering

Risk 

Analysis

Code 

checking

Tainting Fuzzing
Dynamic 

validation

Penetration 

testing



56

Black vs. White box Testing

• Black box 
– Unknown internal structure 

– Study Input → Output correlation

– Generic technique

– Requires end-to-end system

– May miss components



57

Black vs. White box Testing

• Black box 
– Unknown internal structure 

– Study Input → Output correlation

– Generic technique

– Requires end-to-end system

– May miss components

• White box
– Known internal structure 

– Analysis of internal structure

– GUI not necessarily required

– Thorough testing and debugging

– Time consuming



58

Classes of Security Testing

• Manual vs. Automated Testing

• Static vs. Dynamic Testing

• Black vs. White box Testing

Manual Automated

Static Dynamic Blackbox Whitebox

Reverse 

Engineering

Risk 

Analysis

Code 

checking

Tainting Fuzzing
Dynamic 

validation

Penetration 

testing



59

Static Application Security Testing

• Reverse engineering (System level)

– Disassemble application to extract internal structure

– Black box to White box

– Useful for gaining information



60

Static Application Security Testing

• Reverse engineering (System level)

• Risk-based testing (Business level)

– Model worst case scenarios

– Threat modelling for test case generation



61

Static Application Security Testing

• Reverse engineering (System level)

• Risk-based testing (Business level)

• Static code checker (Unit level)

– Checks for rule violations via code structure

– Parsers, Control Flow graphs, Data flow analysis

– Identifies bad coding practices, potential security issues, etc.



62

Classes of Security Testing

• Manual vs. Automated Testing

• Static vs. Dynamic Testing

• Black vs. White box Testing

Manual Automated

Static Dynamic Blackbox Whitebox

Reverse 

Engineering

Risk 

Analysis

Code 

checking

Tainting Fuzzing
Dynamic 

validation

Penetration 

testing



63

Dynamic Application Security Testing

• Taint analysis

– Tracking variable values controlled by user

• Fuzzing

– Bombard with garbage data to cause crashes

• Dynamic validation

– Functional testing based on requirements

• Penetration testing

– End-to-end black box testing

Topic for next lecture



64

Summary Part I

• Java vulnerabilities have large attack surfaces

• Crucial to adapt Secure SDLC

• Threat modelling can drive test case generation

• Static analysis checks code without executing it

• Dynamic analysis executes code and observes behavior



65

Quiz Time!

Which type of testing aims to convert a black box system to 

white box?

Reverse Engineering 



66

Quiz Time!

Which vulnerability allows a remote attacker to change which 

instruction will be executed next?

Remote Code Execution



67

Quiz Time!

Why is Java safe from buffer overflows?

It’s not!



68

Agenda for today

• Part I

– Latest security news 

– Security vulnerabilities in Java

– Types of Security testing

• SAST vs. DAST

• Part II

– SAST under the hood

• Pattern Matching

• Control Flow Analysis

• Data Flow Analysis

– SAST Tools performance



69

Why doesn’t the perfect static analysis tool exist?



70

Static Analysis

• Soundness

• Completeness 



71

Static Analysis

• Soundness

– No missed vulnerability (0 FNs)

– No alarm → no vulnerability exists

• Completeness 



72

Static Analysis

• Soundness

– No missed vulnerability (0 FNs)

– No alarm → no vulnerability exists

• Completeness 

– No false alarms (0 FPs)

– Raises an alarm → vulnerability found



73

Static Analysis

• Soundness

– No missed vulnerability (0 FNs)

– No alarm → no vulnerability exists

• Completeness 

– No false alarms (0 FPs)

– Raises an alarm → vulnerability found

• Ideally: ↑Soundness + ↑Completeness 

• Reality: Compromise on FPs or FNs



74

Usable SAST Tools

• ↓ FPs vs. ↓ FNs

• ↑ Interpretability

• ↑ Scalability



75

SAST under the hood

Pattern matching

Regular 

expressions



76

SAST under the hood

Pattern matching Syntax analysis

Abstract Syntax 

Tree

Control flow 

graph

Data flow 

analysis

Regular 

expressions



77

Pattern Matching

• Look for predefined patterns in code 

– Regular Expressions

– Finite State Automata



78

Pattern Matching

• Look for predefined patterns in code 

– Regular Expressions

– Finite State Automata

• Find all instances of “bug”

b u g

!b

!u
!g



79

Pattern Matching

• Look for predefined patterns in code 

– Regular Expressions

– Finite State Automata

• Find all instances of “bug”

b u g

!b

!u
!g

bug



80

Pattern Matching

• Look for predefined patterns in code 

– Regular Expressions

– Finite State Automata

• Find all instances of “bug”

b u g

!b

!u
!g

bug



81

Pattern Matching

• Look for predefined patterns in code 

– Regular Expressions

– Finite State Automata

• Find all instances of “bug”

b u g

!b

!u
!g

bug



82

Pattern Matching

• Look for predefined patterns in code 

– Regular Expressions

– Finite State Automata

• Find all instances of “bug”

b u g

!b

!u
!g

bug



83

Pattern Matching

• Look for predefined patterns in code 

– Regular Expressions

– Finite State Automata

• Find all instances of “bug”

b u g

!b

!u
!g

bug



84

Pattern Matching

• Look for predefined patterns in code 

– Regular Expressions

– Finite State Automata

• Find all instances of “bug”

b u g

!b

!u
!g

bug
Match!



85

Pattern Matching via Regex

• Look for predefined patterns in code 

– Regular Expressions

– Finite State Automata

• Find all instances of “bug”

b u g

!b

!u
!g

bag



86

Pattern Matching via Regex

• Look for predefined patterns in code 

– Regular Expressions

– Finite State Automata

• Find all instances of “bug”

b u g

!b

!u
!g

bag



87

Pattern Matching via Regex

• Look for predefined patterns in code 

– Regular Expressions

– Finite State Automata

• Find all instances of “bug”

b u g

!b

!u
!g

bag



88

Pattern Matching via Regex

• Look for predefined patterns in code 

– Regular Expressions

– Finite State Automata

• Find all instances of “bug”

b u g

!b

!u
!g

bag



89

Pattern Matching via Regex

• Look for predefined patterns in code 

– Regular Expressions

– Finite State Automata

• Find all instances of “bug”

b u g

!b

!u
!g

No Match!

bag



90

Pattern Matching via Regex

• Look for predefined patterns in code 

– Regular Expressions

– Finite State Automata

• Find all instances of “.*bug”

b u g

!u
!g

!b



91

Pattern Matching via Regex

• Look for predefined patterns in code 

– Regular Expressions

– Finite State Automata

• Find all instances of “.*bug”

b u g

!u
!g

!b



92

Pattern Matching via Regex

• Look for predefined patterns in code 

– Regular Expressions

– Finite State Automata

• Find all instances of “.*bug.*”

b u g

!u
!g

!b

anything



93

Pattern Matching via Regex

• Finds low hanging fruit

– Misconfigurations (port 22 open for everyone)

– Bad imports (System.io.*)

– Call to dangerous functions (strcpy, memcpy)



94

Pattern Matching via Regex

• Finds low hanging fruit

– Misconfigurations (port 22 open for everyone)

– Bad imports (System.io.*)

– Call to dangerous functions (strcpy, memcpy)

• Shortcomings

– Lots of FPs

– Limited support



95

Pattern Matching via Regex

• Finds low hanging fruit

– Misconfigurations (port 22 open for everyone)

– Bad imports (System.io.*)

– Call to dangerous functions (strcpy, memcpy)

• Shortcomings

– Lots of FPs

– Limited support



96

Pattern Matching via Regex

• Finds low hanging fruit

– Misconfigurations (port 22 open for everyone)

– Bad imports (System.io.*)

– Call to dangerous functions (strcpy, memcpy)

• Shortcomings

– Lots of FPs

– Limited support



97

Syntactic Analysis

• Performed via Parsers

• Tokens → Hierarchal data structures

– Parse Tree – Concrete representation

– Abstract Syntax Tree – Abstract representation

Lexer Parser
Stream Tokens Parse Tree



98

Abstract Syntax Tree (AST)



99

Abstract Syntax Tree (AST)



100

Abstract Syntax Tree (AST)

5 1

SUB



101

Abstract Syntax Tree (AST)

5 1

MUL

4SUB



102

Abstract Syntax Tree (AST)

5 1

MUL

4

SUM

2

SUB



103

Abstract Syntax Tree (AST)



104

Abstract Syntax Tree (AST)



105

Abstract Syntax Tree (AST)

=

DEBUG false



106

Abstract Syntax Tree (AST)

if=

DEBUG false



107

Abstract Syntax Tree (AST)

if=

DEBUG false cond

EQ

trueDEBUG



108

Abstract Syntax Tree (AST)

if=

DEBUG false cond

EQ

trueDEBUG

body

Println() Debug line 1

Println() Debug line 2

Println() Debug line 3



109

Abstract Syntax Tree (AST)

if=

DEBUG false cond

EQ

trueDEBUG

body

Println() Debug line 1

Println() Debug line 2

Println() Debug line 3



110

Syntactic Analysis via AST

SAST Tool
Errors

AST

Ruleset



111

Syntactic Analysis via AST

SAST Tool
Errors

Rule # 1: Allow 3 methods

AST

Ruleset



112

Syntactic Analysis via AST

SAST Tool
Errors

Rule # 1: Allow 3 methods

AST

Ruleset



113

Syntactic Analysis via AST

SAST Tool
Errors

xyz()abc() akw()blah()

class

methods members

Rule # 1: Allow 3 methods

AST

Ruleset



114

Syntactic Analysis via AST

SAST Tool
Errors

xyz()abc() akw()blah()

class

methods members

Rule # 1: Allow 3 methods

Error: Too many methods!

AST

Ruleset



115

Syntactic Analysis via AST

Rule # 2: printf(format_string, args_to_print)

SAST Tool
Errors

AST

Ruleset



116

Syntactic Analysis via AST

Rule # 2: printf(format_string, args_to_print)

SAST Tool
Errors

AST

Ruleset



117

Syntactic Analysis via AST

Rule # 2: printf(format_string, args_to_print)

func

x

printf=

Hello World!x

SAST Tool
Errors

AST

Ruleset



118

Syntactic Analysis via AST

Rule # 2: printf(format_string, args_to_print)

Error: Missing param!

func

x

printf=

Hello World!x

SAST Tool
Errors

AST

Ruleset



119

Control Flow Graphs

• Shows all execution paths a program might take

• Trace execution without executing program

• Nodes → Basic blocks

• Transitions → Control transfers

https://dzone.com/articles/how-draw-control-flow-graph

https://dzone.com/articles/how-draw-control-flow-graph


120

Control Flow Graphs

• Shows all execution paths a program might take

• Trace execution without executing program

• Nodes → Basic blocks

• Transitions → Control transfers

If-then-else while 
case

https://dzone.com/articles/how-draw-control-flow-graph

https://dzone.com/articles/how-draw-control-flow-graph


121

Control Flow Graphs



122

Control Flow Graphs



123

Control Flow Graphs



124

Control Flow Graphs

T



125

Control Flow Graphs

T



126

Control Flow Graphs

T
F



127

Control Flow Graphs

T
F

n=?

Only traces control



128

Control Flow Graphs

T
F

n=?

Only traces control



129

Control Flow Graphs

T
F

n=?

Only traces control



130

Control Flow Graphs

T
F

n=?

Only traces control



131

Control Flow Graphs

T
F

n=?

Only traces control



132

Control Flow Graphs

T
F

n=?

Only traces control



133

Control Flow Graphs

T
F

n=?

Only traces control



134

Control Flow Graphs

T
F

n=?

Only traces control



135

Data Flow Analysis

• Tracks data values throughout program

• Shows all values variables might have

• User controlled variable (Source) → Tainted

• Rest (Sink) → Untainted



136

Data Flow Analysis

• Prove that

– No untainted data is expected

– No tainted data is used



137

Data Flow Analysis

• Prove that

– No untainted data is expected

– No tainted data is used

SQL st.
Sink: 

Database 

Source: 

Contact



138

Data Flow Analysis

• Prove that

– No untainted data is expected

– No tainted data is used

SQL st.
Sink: 

Database 

Source: 

Contact

‘ or 1=1#



139

Source/Sink Clash

data is 

tainted

println() 
expects 

untainted



140

Data Flow Analysis

• Reaching definitions 

– Top-down approach

– Possible values of a variable



141

Data Flow Analysis

• Reaching definitions 

– Top-down approach

– Possible values of a variable



142

Data Flow Analysis

• Reaching definitions 

– Top-down approach

– Possible values of a variable



143

Data Flow Analysis

• Reaching definitions 

– Top-down approach

– Possible values of a variable



144

Data Flow Analysis

• Reaching definitions 

– Top-down approach

– Possible values of a variable



145

Data Flow Analysis

• Reaching definitions 

– Top-down approach

– Possible values of a variable



146

Data Flow Analysis

• Reaching definitions 

– Top-down approach

– Possible values of a variable



147

Data Flow Analysis

• Reaching definitions 

– Top-down approach

– Possible values of a variable



148

Data Flow Analysis

• Reaching definitions 

– Top-down approach

– Possible values of a variable



149

Data Flow Analysis

• Reaching definitions 

– Top-down approach

– Possible values of a variable



150



151

b1

b2

b3

b4 b5

b6



152

a b c

b1 - 0 1

b2 0, a++ - -

b3 - - -

b4 - 10 -

b5 - - b

b6 - - -

b1

b2

b3

b4 b5

b6



153

a b c

b1 - 0 1

b2 0, a++ - -

b3 - - -

b4 - 10 -

b5 - - b

b6 - - -

b1

b2

b3

b4 b5

b6



154

a b c

b1 - 0 1

b2 0, a++ - -

b3 - - -

b4 - 10 -

b5 - - b

b6 - - -

b1

b2

b3

b4 b5

b6



155

a b c

b1 - 0 1

b2 0, a++ - -

b3 - - -

b4 - 10 -

b5 - - b

b6 - - -

b1

b2

b3

b4 b5

b6



156

a b c

b1 - 0 1

b2 0, a++ - -

b3 - - -

b4 - 10 -

b5 - - b

b6 - - -

b1

b2

b3

b4 b5

b6



157

a b c

b1 - 0 1

b2 0, a++ - -

b3 - - -

b4 - 10 -

b5 - - b

b6 - - -

b1

b2

b3

b4 b5

b6



158

a b c

b1 - 0 1

b2 0, a++ - -

b3 - - -

b4 - 10 -

b5 - - b

b6 - - -

b1

b2

b3

b4 b5

b6



159

a b c

b1 - 0 1

b2 0, a++ - -

b3 - - -

b4 - 10 -

b5 - - b

b6 - - -

b1

b2

b3

b4 b5

b6

a = {0, 1, 2, 3, …}
b = {0, 10}
c = {1, b} → {0, 1, 10}

Data Flow Analysis



160

a b c

b1 - 0 1

b2 0, a++ - -

b3 - - -

b4 - 10 -

b5 - - b

b6 - - -

b1

b2

b3

b4 b5

b6

a = {0, 1, 2, 3, …}
b = {0, 10}
c = {1, b} → {0, 1, 10}

Data Flow Analysis



161

a b c

b1 - 0 1

b2 0, a++ - -

b3 - - -

b4 - 10 -

b5 - - b

b6 - - -

b1

b2

b3

b4 b5

b6

a = {0, 1, 2, 3, …}
b = {0, 10}
c = {1, b} → {0, 1, 10}

Data Flow Analysis



162

a b c

b1 - 0 1

b2 0, a++ - -

b3 - - -

b4 - 10 -

b5 - - b

b6 - - -

b1

b2

b3

b4 b5

b6

a = {0, 1, 2, 3, …}
b = {0, 10}
c = {1, b} → {0, 1, 10}

Data Flow Analysis



163

a b c

b1 - 0 1

b2 0, a++ - -

b3 - - -

b4 - 10 -

b5 - - b

b6 - - -

b1

b2

b3

b4 b5

b6

a = {0, 1, 2, 3, …}
b = {0, 10}
c = {1, b} → {0, 1, 10}

Data Flow Analysis



164

a b c

b1 - 0 1

b2 0, a++ - -

b3 - - -

b4 - 10 -

b5 - - b

b6 - - -

b1

b2

b3

b4 b5

b6

a = {0, 1, 2, 3, …}
b = {0, 10}
c = {1, b} → {0, 1, 10}

Data Flow Analysis

Sound but 

imprecise



165

Data Flow Analysis in Security

• Source/Sink clash



166

Data Flow Analysis in Security

• Source/Sink clash

– Sanitization problems

– Code injection (Update attack)

– Deserialization vulnerability



167

Data Flow Analysis in Security

• Source/Sink clash

– Sanitization problems

– Code injection (Update attack)

– Deserialization vulnerability

• Control and Data flow analysis



168

Data Flow Analysis in Security

• Source/Sink clash

– Sanitization problems

– Code injection (Update attack)

– Deserialization vulnerability

• Control and Data flow analysis

– Type confusion vulnerability

– Use-after-free vulnerability



169

Data Flow Analysis in Security

• Source/Sink clash

– Sanitization problems

– Code injection (Update attack)

– Deserialization vulnerability

• Control and Data flow analysis

– Type confusion vulnerability

– Use-after-free vulnerability

• Denial of Service??

• Crashes??



170

• Open source
–

–

– SpotBugs

– FindSecBugs

• Proprietary
– Coverity

– CheckMarx

Static Analysis Tools



171

• Open source
–

• Ruleset based code checker

–

• Checks coding standards

– SpotBugs

• Checks Java bytecode for bad practices, code style, and injections

– FindSecBugs

• Checks for OWASP Top 10 vulnerabilities

• Proprietary
– Coverity

• SAST platform for defects and security vulnerabilities

– CheckMarx

• Full fledge platform for static analysis and exposure management

Static Analysis Tools



172

• Open source
–

• Ruleset based code checker

–

• Checks coding standards

– SpotBugs

• Checks Java bytecode for bad practices, code style, and injections

– FindSecBugs

• Checks for OWASP Top 10 vulnerabilities

• Proprietary
– Coverity

• SAST platform for defects and security vulnerabilities

– CheckMarx

• Full fledge platform for static analysis and exposure management

Static Analysis Tools



173

SAST Tools Performance

• Telenor Digital wants to incorporate security into SDLC

• Investigate developer perceptions of SAST tools



174

SAST Tools Performance

• Using Juliet Test Suite – 24,000 test cases

• Precision – Ability to guess correct type of flaw



175

SAST Tools Performance

• Using Juliet Test Suite – 24,000 test cases

• Precision – Ability to guess correct type of flaw

• Recall – Ability to find flaws



176

SAST Tools Performance

• Using Juliet Test Suite – 24,000 test cases

• Precision – Ability to guess correct type of flaw

• Recall – Ability to find flaws



177

SAST Dev Perceptions

• “. . . Making the things actually work, that usually is the worst 
thing. The hassle-factor is not to be underestimated. . . ”

• “. . . At least from my experience with the Sonar tool is that it 
sometimes complains about issues that are not really issues...”

• “. . . And of course in itself is not productive, nobody gives you a 
hug after fixing SonarQube reports...”



178

SAST Dev Perceptions

• “. . . Making the things actually work, that usually is the worst 
thing. The hassle-factor is not to be underestimated. . . ”

• “. . . At least from my experience with the Sonar tool is that it 
sometimes complains about issues that are not really issues...”

• “. . . And of course in itself is not productive, nobody gives you a 
hug after fixing SonarQube reports...”

• Using one SAST tool is not enough

• Low capability of SAST tools in general. 

• Commercial tool not an exception



179

Summary Part II

• Perfect static analysis is not possible

• Pattern matching can find limited but easy to find 

problems

• ASTs make code structure analysis easy

• Control and Data FGs are better at finding security 

vulnerabilities

• Current SAST Tools are

– Useful

– Difficult to integrate

– Limited in capabilities



180

Additional Material 

• https://www.theserverside.com/feature/Stay-ahead-of-Java-security-issues-like-

SQL-and-LDAP-injections

• https://www.upguard.com/articles/top-10-java-vulnerabilities-and-how-to-fix-

them

• https://en.wikipedia.org/wiki/Static_program_analysis

• https://youtu.be/Heor8BVa4A0

• https://youtu.be/7KCMK-LY-WM

• Aktas, Kursat, and Sevil Sen. "UpDroid: Updated Android Malware and Its 

Familial Classification." Nordic Conference on Secure IT Systems. Springer, 

Cham, 2018.

Icons courtesy: www.flaticons.com by FlatIcons, FreePik, SmashIcons, Eucalyp, Monkik

https://www.theserverside.com/feature/Stay-ahead-of-Java-security-issues-like-SQL-and-LDAP-injections
https://www.upguard.com/articles/top-10-java-vulnerabilities-and-how-to-fix-them
https://en.wikipedia.org/wiki/Static_program_analysis
https://youtu.be/Heor8BVa4A0
https://youtu.be/7KCMK-LY-WM
http://www.flaticons.com/


181

Time for questions



182

Data Flow Analysis

Control



183

Data Flow Analysis

Control
Data



184

Data Flow Analysis

Control
Data

a ← {0}

a ← {7}

a ← {0, 7}



185

Overflow vulnerability

• This vulnerability allows remote attackers to execute arbitrary 

code on vulnerable installations of Oracle Java. The user must 

visit a malicious page or open a malicious file to exploit this 

vulnerability.

• The flaw exists within the handling of image data. The issue lies 

in insufficient validation of supplied image data inside the native 

function readImage(). An attacker can leverage this vulnerability 

to execute arbitrary code under the context of the current 

process.

https://www.zerodayinitiative.com/advisories/ZDI-16-032/

https://www.zerodayinitiative.com/advisories/ZDI-16-032/

