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Agenda for today

• Part I

– Latest security news 

– Security vulnerabilities in Java

– Types of Security testing

• SAST vs. DAST

• Part II

– SAST under the hood

• Pattern Matching

• Control Flow Analysis

• Data Flow Analysis

– SAST Tools performance
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Announcements

• Assignment 2 – Security module

• Exam questions
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Agenda for today
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– Latest security news 

– Security vulnerabilities in Java

– Types of Security testing

• SAST vs. DAST

• Part II

– SAST under the hood

• Pattern Matching

• Control Flow Analysis

• Data Flow Analysis

– SAST Tools performance
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Software testing

vs.

Security testing
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Impact – Stolen chats

https://ivan.barreraoro.com.ar/signal-desktop-html-tag-injection/

https://ivan.barreraoro.com.ar/signal-desktop-html-tag-injection/
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Impact – Stolen chats

https://ivan.barreraoro.com.ar/signal-desktop-html-tag-injection/

https://ivan.barreraoro.com.ar/signal-desktop-html-tag-injection/
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Impact – Github down

https://thehackernews.com/2018/03/biggest-ddos-attack-github.html

https://thehackernews.com/2018/03/biggest-ddos-attack-github.html
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Impact – Github down

https://thehackernews.com/2018/03/biggest-ddos-attack-github.html

Caused by misconfigured Memcached 

servers

https://thehackernews.com/2018/03/biggest-ddos-attack-github.html
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Is Java Secure?

• Secure from memory corruption

• … but not completely

• Potential targets

– Java Virtual Machine

– Libraries in native code

https://w3techs.com/technologies/details/pl-java/all/all

https://w3techs.com/technologies/details/pl-java/all/all
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Vulnerability databases

• OWASP Top Ten project

– Awareness document

– Web application security

• NIST National Vulnerability Database

– U.S govt. repository

– General security flaws
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JRE vulnerabilities

https://www.cvedetails.com/product/19116/Oracle-JDK.html?vendor_id=93

https://www.cvedetails.com/product/19116/Oracle-JDK.html?vendor_id=93
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JRE vulnerabilities

https://www.cvedetails.com/product/19116/Oracle-JDK.html?vendor_id=93

https://www.cvedetails.com/product/19116/Oracle-JDK.html?vendor_id=93
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Some Examples
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What’s wrong?
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Code Injection vulnerability

• Execute code in unauthorized applications

• Victim to Update Attack
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Code Injection vulnerability

• Execute code in unauthorized applications

• Victim to Update Attack

• Top vulnerability in OWASP Top 10
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Code Injection vulnerability

• Execute code in unauthorized applications

• Victim to Update Attack

• Top vulnerability in OWASP Top 10

• Tricky to fix

– Stop adding plugins

– Limit privileges 
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Type confusion vulnerability

https://www.thezdi.com/blog/2018/4/25/when-java-throws-you-a-lemon-make-limenade-sandbox-escape-by-type-confusion

https://www.thezdi.com/blog/2018/4/25/when-java-throws-you-a-lemon-make-limenade-sandbox-escape-by-type-confusion
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Type confusion vulnerability

https://www.thezdi.com/blog/2018/4/25/when-java-throws-you-a-lemon-make-limenade-sandbox-escape-by-type-confusion

https://www.thezdi.com/blog/2018/4/25/when-java-throws-you-a-lemon-make-limenade-sandbox-escape-by-type-confusion
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Bypassing Java Security Manager

• Exploit Type confusion vulnerability

https://access.redhat.com/security/cve/cve-2014-3558

https://access.redhat.com/security/cve/cve-2014-3558
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Bypassing Java Security Manager

• Exploit Type confusion vulnerability

https://access.redhat.com/security/cve/cve-2014-3558

Java 

Security 

Manager

https://access.redhat.com/security/cve/cve-2014-3558


29

Bypassing Java Security Manager

• Exploit Type confusion vulnerability

https://access.redhat.com/security/cve/cve-2014-3558

Java 

Security 

Manager

https://access.redhat.com/security/cve/cve-2014-3558
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Bypassing Java Security Manager

• Exploit Type confusion vulnerability

• Escalated privileges

https://access.redhat.com/security/cve/cve-2014-3558

Java 

Security 

Manager

https://access.redhat.com/security/cve/cve-2014-3558
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Bypassing Java Security Manager

• Exploit Type confusion vulnerability

• Escalated privileges

https://access.redhat.com/security/cve/cve-2014-3558

Java 

Security 

Manager

https://access.redhat.com/security/cve/cve-2014-3558
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Bypassing Java Security Manager

• Exploit Type confusion vulnerability

• Escalated privileges

– Set JSM to null

https://access.redhat.com/security/cve/cve-2014-3558

Java 

Security 

Manager

https://access.redhat.com/security/cve/cve-2014-3558
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Bypassing Java Security Manager

• Vulnerable: Hibernate → Reflection helper 

• Exploit Type confusion vulnerability

• Escalated privileges

– Set JSM to null

https://access.redhat.com/security/cve/cve-2014-3558

Java 

Security 

Manager

https://access.redhat.com/security/cve/cve-2014-3558
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Arbitrary Code Execution (ACE) 

• Vulnerable: XStream → Converts XML to Object

• Deserialization vulnerability

https://access.redhat.com/security/cve/cve-2013-7285

https://access.redhat.com/security/cve/cve-2013-7285
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Arbitrary Code Execution (ACE) 

• Vulnerable: XStream → Converts XML to Object

• Deserialization vulnerability

https://access.redhat.com/security/cve/cve-2013-7285

https://access.redhat.com/security/cve/cve-2013-7285
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Arbitrary Code Execution (ACE) 

• Vulnerable: XStream → Converts XML to Object

• Deserialization vulnerability

– Via malicious input XML

https://access.redhat.com/security/cve/cve-2013-7285

https://access.redhat.com/security/cve/cve-2013-7285
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Arbitrary Code Execution (ACE) 

• Vulnerable: XStream → Converts XML to Object

• Deserialization vulnerability

– Via malicious input XML

https://access.redhat.com/security/cve/cve-2013-7285

https://access.redhat.com/security/cve/cve-2013-7285
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Remote Code Execution (RCE)

https://pivotal.io/security/cve-2018-1273

https://pivotal.io/security/cve-2018-1273
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Remote Code Execution (RCE)

https://pivotal.io/security/cve-2018-1273

https://pivotal.io/security/cve-2018-1273
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Remote Code Execution (RCE)

• Spring Data Commons → DB connections

• Property binder vulnerability

– Via specially crafted request parameters

https://pivotal.io/security/cve-2018-1273

https://pivotal.io/security/cve-2018-1273
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https://www.waratek.com/alert-oracle-guidance-cpu-april-2018/

https://www.waratek.com/alert-oracle-guidance-cpu-april-2018/
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Why test for security?

Attack surface

Exploit

• Security testing → Non-functional testing

• Who’s job is to test for security?



45https://www.dignitasdigital.com/blog/easy-way-to-understand-sdlc/

When to test for security?

Risk assessment & 

Abuse cases

Threat 

modelling

Design for 

security

Secure 

implementation
Security testing & 

Code reviews

Patching & 

Updating

SECURE

https://www.dignitasdigital.com/blog/easy-way-to-understand-sdlc/
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Classes of Security Testing

• Manual vs. Automated Testing

Manual Automated
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Classes of Security Testing

• Manual vs. Automated Testing

• Static vs. Dynamic Testing

• Black vs. White box Testing

Manual Automated

Static Dynamic Blackbox Whitebox

Reverse 

Engineering

Risk 

Analysis

Code 

checking

Tainting Fuzzing
Dynamic 

validation

Penetration 

testing
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Manual vs. Automated Testing

• Manual

– Code reviews

– Efficient use of human expertise

– Labour intensive
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Manual vs. Automated Testing

• Manual

– Code reviews

– Efficient use of human expertise

– Labour intensive

• Automated

– Automated code checking

– Can check MLOC in seconds

– Incomparable to human expertise
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Classes of Security Testing

• Manual vs. Automated Testing

• Static vs. Dynamic Testing

• Black vs. White box Testing

Manual Automated

Static Dynamic Blackbox Whitebox

Reverse 

Engineering

Risk 

Analysis

Code 

checking

Tainting Fuzzing
Dynamic 

validation

Penetration 

testing
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Static vs. Dynamic Testing

• (Automated) Static analysis

– Code review by computers

– Checks all possible code paths

– Relatively easy to extract results

– Limited capabilities
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Static vs. Dynamic Testing

• (Automated) Static analysis

– Code review by computers

– Checks all possible code paths

– Relatively easy to extract results

– Limited capabilities

• Dynamic analysis

– Execute code and observe behaviour

– Checks functional code paths only

– Much advanced analysis

– Difficult to set up
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Classes of Security Testing

• Manual vs. Automated Testing

• Static vs. Dynamic Testing

• Black vs. White box Testing

Manual Automated

Static Dynamic Blackbox Whitebox

Reverse 

Engineering

Risk 

Analysis

Code 

checking

Tainting Fuzzing
Dynamic 

validation

Penetration 

testing
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Black vs. White box Testing

• Black box 
– Unknown internal structure 

– Study Input → Output correlation

– Generic technique

– Requires end-to-end system

– May miss components
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Black vs. White box Testing

• Black box 
– Unknown internal structure 

– Study Input → Output correlation

– Generic technique

– Requires end-to-end system

– May miss components

• White box
– Known internal structure 

– Analysis of internal structure

– GUI not necessarily required

– Thorough testing and debugging

– Time consuming
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Classes of Security Testing

• Manual vs. Automated Testing

• Static vs. Dynamic Testing

• Black vs. White box Testing

Manual Automated

Static Dynamic Blackbox Whitebox

Reverse 

Engineering

Risk 

Analysis

Code 

checking

Tainting Fuzzing
Dynamic 

validation

Penetration 

testing
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Static Application Security Testing

• Reverse engineering (System level)

– Disassemble application to extract internal structure

– Black box to White box

– Useful for gaining information
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Static Application Security Testing

• Reverse engineering (System level)

• Risk-based testing (Business level)

– Model worst case scenarios

– Threat modelling for test case generation
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Static Application Security Testing

• Reverse engineering (System level)

• Risk-based testing (Business level)

• Static code checker (Unit level)

– Checks for rule violations via code structure

– Parsers, Control Flow graphs, Data flow analysis

– Identifies bad coding practices, potential security issues, etc.
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Classes of Security Testing

• Manual vs. Automated Testing

• Static vs. Dynamic Testing

• Black vs. White box Testing

Manual Automated

Static Dynamic Blackbox Whitebox

Reverse 

Engineering

Risk 

Analysis

Code 

checking

Tainting Fuzzing
Dynamic 

validation

Penetration 

testing
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Dynamic Application Security Testing

• Taint analysis

– Tracking variable values controlled by user

• Fuzzing

– Bombard with garbage data to cause crashes

• Dynamic validation

– Functional testing based on requirements

• Penetration testing

– End-to-end black box testing

Topic for next lecture
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Summary Part I

• Java vulnerabilities have large attack surfaces

• Crucial to adapt Secure SDLC

• Threat modelling can drive test case generation

• Static analysis checks code without executing it

• Dynamic analysis executes code and observes behavior
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Quiz Time!

Which type of testing aims to convert a black box system to 

white box?

Reverse Engineering 
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Quiz Time!

Which vulnerability allows a remote attacker to change which 

instruction will be executed next?

Remote Code Execution
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Quiz Time!

Why is Java safe from buffer overflows?

It’s not!
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Agenda for today

• Part I

– Latest security news 

– Security vulnerabilities in Java

– Types of Security testing

• SAST vs. DAST

• Part II

– SAST under the hood

• Pattern Matching

• Control Flow Analysis

• Data Flow Analysis

– SAST Tools performance
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Why doesn’t the perfect static analysis tool exist?
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Static Analysis

• Soundness

• Completeness 
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Static Analysis

• Soundness

– No missed vulnerability (0 FNs)

– No alarm → no vulnerability exists

• Completeness 

– No false alarms (0 FPs)

– Raises an alarm → vulnerability found

• Ideally: ↑Soundness + ↑Completeness 

• Reality: Compromise on FPs or FNs
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Usable SAST Tools

• ↓ FPs vs. ↓ FNs

• ↑ Interpretability

• ↑ Scalability
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SAST under the hood

Pattern matching

Regular 

expressions
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SAST under the hood

Pattern matching Syntax analysis

Abstract Syntax 

Tree

Control flow 

graph

Data flow 

analysis

Regular 

expressions
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Pattern Matching

• Look for predefined patterns in code 

– Regular Expressions

– Finite State Automata
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Pattern Matching

• Look for predefined patterns in code 

– Regular Expressions

– Finite State Automata

• Find all instances of “bug”

b u g

!b

!u
!g

bug
Match!
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Pattern Matching via Regex

• Look for predefined patterns in code 

– Regular Expressions

– Finite State Automata

• Find all instances of “bug”

b u g

!b

!u
!g
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Pattern Matching via Regex

• Look for predefined patterns in code 

– Regular Expressions
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Pattern Matching via Regex

• Look for predefined patterns in code 

– Regular Expressions

– Finite State Automata

• Find all instances of “bug”

b u g

!b

!u
!g

No Match!

bag
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Pattern Matching via Regex

• Look for predefined patterns in code 

– Regular Expressions

– Finite State Automata

• Find all instances of “.*bug”

b u g

!u
!g

!b
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Pattern Matching via Regex

• Look for predefined patterns in code 

– Regular Expressions

– Finite State Automata

• Find all instances of “.*bug”

b u g

!u
!g

!b
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Pattern Matching via Regex

• Look for predefined patterns in code 

– Regular Expressions

– Finite State Automata

• Find all instances of “.*bug.*”

b u g

!u
!g

!b

anything
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Pattern Matching via Regex

• Finds low hanging fruit

– Misconfigurations (port 22 open for everyone)

– Bad imports (System.io.*)

– Call to dangerous functions (strcpy, memcpy)



94

Pattern Matching via Regex

• Finds low hanging fruit

– Misconfigurations (port 22 open for everyone)

– Bad imports (System.io.*)

– Call to dangerous functions (strcpy, memcpy)

• Shortcomings

– Lots of FPs

– Limited support



95

Pattern Matching via Regex

• Finds low hanging fruit

– Misconfigurations (port 22 open for everyone)

– Bad imports (System.io.*)

– Call to dangerous functions (strcpy, memcpy)

• Shortcomings

– Lots of FPs

– Limited support



96

Pattern Matching via Regex

• Finds low hanging fruit

– Misconfigurations (port 22 open for everyone)

– Bad imports (System.io.*)

– Call to dangerous functions (strcpy, memcpy)

• Shortcomings

– Lots of FPs

– Limited support
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Syntactic Analysis

• Performed via Parsers

• Tokens → Hierarchal data structures

– Parse Tree – Concrete representation

– Abstract Syntax Tree – Abstract representation

Lexer Parser
Stream Tokens Parse Tree
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Abstract Syntax Tree (AST)
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Abstract Syntax Tree (AST)

5 1

SUB
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Abstract Syntax Tree (AST)

5 1

MUL

4SUB
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Abstract Syntax Tree (AST)

5 1

MUL

4

SUM

2

SUB
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Abstract Syntax Tree (AST)
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Abstract Syntax Tree (AST)
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Abstract Syntax Tree (AST)

=

DEBUG false
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Abstract Syntax Tree (AST)
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Abstract Syntax Tree (AST)

if=

DEBUG false cond

EQ

trueDEBUG
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Abstract Syntax Tree (AST)

if=

DEBUG false cond

EQ

trueDEBUG

body

Println() Debug line 1

Println() Debug line 2

Println() Debug line 3
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Abstract Syntax Tree (AST)

if=

DEBUG false cond

EQ

trueDEBUG

body

Println() Debug line 1

Println() Debug line 2

Println() Debug line 3
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Syntactic Analysis via AST

SAST Tool
Errors

AST

Ruleset
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Syntactic Analysis via AST

SAST Tool
Errors

xyz()abc() akw()blah()

class

methods members

Rule # 1: Allow 3 methods

AST

Ruleset
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Syntactic Analysis via AST

SAST Tool
Errors

xyz()abc() akw()blah()

class

methods members

Rule # 1: Allow 3 methods

Error: Too many methods!

AST

Ruleset
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Syntactic Analysis via AST

Rule # 2: printf(format_string, args_to_print)

SAST Tool
Errors

AST

Ruleset
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Syntactic Analysis via AST

Rule # 2: printf(format_string, args_to_print)

SAST Tool
Errors

AST

Ruleset
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Syntactic Analysis via AST

Rule # 2: printf(format_string, args_to_print)

func

x

printf=

Hello World!x

SAST Tool
Errors

AST

Ruleset
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Syntactic Analysis via AST

Rule # 2: printf(format_string, args_to_print)

Error: Missing param!

func

x

printf=

Hello World!x

SAST Tool
Errors

AST

Ruleset
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Control Flow Graphs

• Shows all execution paths a program might take

• Trace execution without executing program

• Nodes → Basic blocks

• Transitions → Control transfers

https://dzone.com/articles/how-draw-control-flow-graph

https://dzone.com/articles/how-draw-control-flow-graph
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Control Flow Graphs

• Shows all execution paths a program might take

• Trace execution without executing program

• Nodes → Basic blocks

• Transitions → Control transfers

If-then-else while 
case

https://dzone.com/articles/how-draw-control-flow-graph

https://dzone.com/articles/how-draw-control-flow-graph
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Control Flow Graphs
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Control Flow Graphs

T
F

n=?

Only traces control
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Data Flow Analysis

• Tracks data values throughout program

• Shows all values variables might have

• User controlled variable (Source) → Tainted

• Rest (Sink) → Untainted
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Data Flow Analysis

• Prove that

– No untainted data is expected

– No tainted data is used
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Database 

Source: 

Contact
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Data Flow Analysis

• Prove that

– No untainted data is expected

– No tainted data is used

SQL st.
Sink: 

Database 

Source: 

Contact

‘ or 1=1#
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Source/Sink Clash

data is 

tainted

println() 
expects 

untainted
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Data Flow Analysis

• Reaching definitions 

– Top-down approach

– Possible values of a variable
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Data Flow Analysis

• Reaching definitions 

– Top-down approach

– Possible values of a variable
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a b c

b1 - 0 1

b2 0, a++ - -

b3 - - -

b4 - 10 -

b5 - - b

b6 - - -

b1

b2

b3

b4 b5

b6

a = {0, 1, 2, 3, …}
b = {0, 10}
c = {1, b} → {0, 1, 10}
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Sound but 

imprecise
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Data Flow Analysis in Security

• Source/Sink clash
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Data Flow Analysis in Security

• Source/Sink clash

– Sanitization problems

– Code injection (Update attack)

– Deserialization vulnerability

• Control and Data flow analysis

– Type confusion vulnerability

– Use-after-free vulnerability

• Denial of Service??

• Crashes??
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• Open source
–

–

– SpotBugs

– FindSecBugs

• Proprietary
– Coverity

– CheckMarx

Static Analysis Tools
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• Open source
–

• Ruleset based code checker

–

• Checks coding standards

– SpotBugs

• Checks Java bytecode for bad practices, code style, and injections

– FindSecBugs

• Checks for OWASP Top 10 vulnerabilities

• Proprietary
– Coverity

• SAST platform for defects and security vulnerabilities

– CheckMarx

• Full fledge platform for static analysis and exposure management

Static Analysis Tools
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SAST Tools Performance

• Telenor Digital wants to incorporate security into SDLC

• Investigate developer perceptions of SAST tools
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SAST Dev Perceptions

• “. . . Making the things actually work, that usually is the worst 
thing. The hassle-factor is not to be underestimated. . . ”

• “. . . At least from my experience with the Sonar tool is that it 
sometimes complains about issues that are not really issues...”

• “. . . And of course in itself is not productive, nobody gives you a 
hug after fixing SonarQube reports...”
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SAST Dev Perceptions

• “. . . Making the things actually work, that usually is the worst 
thing. The hassle-factor is not to be underestimated. . . ”

• “. . . At least from my experience with the Sonar tool is that it 
sometimes complains about issues that are not really issues...”

• “. . . And of course in itself is not productive, nobody gives you a 
hug after fixing SonarQube reports...”

• Using one SAST tool is not enough

• Low capability of SAST tools in general. 

• Commercial tool not an exception
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Summary Part II

• Perfect static analysis is not possible

• Pattern matching can find limited but easy to find 

problems

• ASTs make code structure analysis easy

• Control and Data FGs are better at finding security 

vulnerabilities

• Current SAST Tools are

– Useful

– Difficult to integrate

– Limited in capabilities
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Additional Material 

• https://www.theserverside.com/feature/Stay-ahead-of-Java-security-issues-like-

SQL-and-LDAP-injections

• https://www.upguard.com/articles/top-10-java-vulnerabilities-and-how-to-fix-

them

• https://en.wikipedia.org/wiki/Static_program_analysis

• https://youtu.be/Heor8BVa4A0

• https://youtu.be/7KCMK-LY-WM

• Aktas, Kursat, and Sevil Sen. "UpDroid: Updated Android Malware and Its 

Familial Classification." Nordic Conference on Secure IT Systems. Springer, 

Cham, 2018.

Icons courtesy: www.flaticons.com by FlatIcons, FreePik, SmashIcons, Eucalyp, Monkik

https://www.theserverside.com/feature/Stay-ahead-of-Java-security-issues-like-SQL-and-LDAP-injections
https://www.upguard.com/articles/top-10-java-vulnerabilities-and-how-to-fix-them
https://en.wikipedia.org/wiki/Static_program_analysis
https://youtu.be/Heor8BVa4A0
https://youtu.be/7KCMK-LY-WM
http://www.flaticons.com/
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Time for questions
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Data Flow Analysis

Control
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Data Flow Analysis

Control
Data
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Data Flow Analysis

Control
Data

a ← {0}

a ← {7}

a ← {0, 7}
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Overflow vulnerability

• This vulnerability allows remote attackers to execute arbitrary 

code on vulnerable installations of Oracle Java. The user must 

visit a malicious page or open a malicious file to exploit this 

vulnerability.

• The flaw exists within the handling of image data. The issue lies 

in insufficient validation of supplied image data inside the native 

function readImage(). An attacker can leverage this vulnerability 

to execute arbitrary code under the context of the current 

process.

https://www.zerodayinitiative.com/advisories/ZDI-16-032/

https://www.zerodayinitiative.com/advisories/ZDI-16-032/

