
Model-Based Testing
(ISTQB Chapter 4)

Arie van Deursen

1

Test Basis

Test
Conditions

Selected
Test

Conditions

Test
Cases

Test
Scripts

ISTQB Test Design
4.1

4.1.4: Test
Implementation

4.1.2: Test
Analysis

4.1.3: Test Design

2

Test condition: An item or event of a component or system
that could be verified by one or more test cases,

e.g. a function, transaction, feature, quality attribute, or
structural element.

Test case: A set of input values, execution preconditions,
expected results and execution postconditions,

developed for a particular objective or test condition,
such as to exercise a particular program path

or to verify compliance with a specific requirement.
[After IEEE 610]

Test basis: All documents from which the requirements of a
component or system can be inferred.

Documentation on which the test cases are based

3

Traceability

• Link test conditions back to test basis
• Where is a given requirement tested?
• Which requirements does this test case address?

• Horizontal:
• Within one test level

• Vertical:
• Between requirement

and implementation

4

4.1.2

Traceability Management in Practice

Agile (modern)
• User stories have issue ID (e.g., GitHub, Jira)
• Pull requests / commits trace back to issues
• Story boards (GitHub, Trello)

High ceremony (traditional)
• Requirements management system

Low tech (high maintenance)
• A spreadsheet

5

“If you did not document it,
you did not do it!”
• Inspections by Government & Notified Bodies:

• If you do not follow regulation & your internal procedures
(QMS), you cannot guarantee safety & effectiveness.

• Consequences:
• Delivery stop for sites outside USA and/or close down for

sites in the USA.
• In case of safety (patient) issues & not sticking to the law:

Jail for upper mgt.

• At Philips:
• Inspection Back-office to answer questions fast & accurately

6
6

Test Design Includes Oracle

“Software that applies a pass/fail criterion to a program execution is
called a (test) oracle”.

Approaches
1. Comparison against predicted output
2. Self checks (“Partial Oracle” /

“Reasonableness check”)
3. Version comparisons

4.1.3

7

Testing a Sudoku
generator/solver?

You can’t predict
full output

But you can check
validity of any
solution (9 unique
digitis on very row,
column, square)

8

Dynamic Test Design Techniques

• Specification Based (black box, 4.3)
• Equivalence partitioning, boundary value analysis
• Decision tables, state transition (model-based)
• Use case testing

• Structure Based (white box, 4.4)
• Statement, decision, condition, multiple condition

• Experience Based (4.5)
• Error guessing, exploratory testing

4.2

9

Model:
• Simpler than artifact
• Preserves (approximates) certain key attributes
• Supports analysis

10

Model Types in the UML

11

Models for Testing

• Models from requirements
• Meaningful to domain expert
• Use to obtain test cases that systematically exercise required behavior

• Models from code
• Meaningful to developer
• Use to obtain test cases that systematically exercise implemented behavior

12

Choices!

• New or old?
• 12 or 24?
• KPN at home?
• Budget?
• Basis?
• No worries?
• Also internet

provider?
• …

13

A Simple Decision Table

Decision Table: models how combinations of conditions
lead to given actions (or outputs)

14

With “don’t care” values

With duplicate variants removed

With “don’t care” values expanded

15

Larger Decision Tables

• Decision tables can have many conditions

• In general: N conditions: 2^N variants

• Omitted / non-specified variants?
• Indicate what “default” behavior is.

16

Five Decision Table Test Strategies

All explicit variants: 6

All possible variants: 2^3 = 8
(= all combinations)

All decisions /
every unique outcome: 4

Each condition T/F:
2 cases (TTT, FFF)

Each condition AND all decisions = (M)C/DC 17

MC/DC:
Modified Condition / Decision Coverage

• Conditions: Each condition should be once true, once false
• Decisions: Each action should be taken at least once
• Modified: Each condition should individually determine the outcome

• For each condition require two test cases that only differ in outcome
and that condition

18

Finding an “MC/DC Cover”

• Expand decision table
• Pick variants with unique outcome
• Combine with others so that they differ in one condition only

19

Finding an “MC/DC Cover”

• Expand decision table
• Pick variants with unique outcome
• Combine with others so that they differ in one condition only

20

Finding an “MC/DC Cover”

• Expand decision table
• Pick variants with unique outcome
• Combine with others so that they differ in one condition only

21

Finding an “MC/DC Cover”

• Expand decision table
• Pick variants with unique outcome
• Combine with others so that they differ in one condition only

22

MC/DC: N+1 Test Cases

• For a table with N conditions and yes/no actions, N+1 test cases
suffice to obtain an MC/DC cover

• Condition C1: Test cases T1 and T1’
• Condition C2: Try to “reuse” earlier test cases T1 or T1’

23

JUnit Test Methods from Decision Tables

24

Junit
Parameterized
Tests

25

Cucumber Scenario

26

Controllability and
Observability
• Can conditions be easily set?
• Environmental conditions, exceptions, …

• Can actions be easily observed?
• Side effects, state changes, …

• With mocking
• Mock condition classes to set inputs
• Mock action classes to observe effects

• Decision table test cases focus on combinations of conditions!

Decision
TableConditions Actions

27

Non-binary “decisions”

• Decision tables can be generalized to non-Boolean conditions
• Most testing strategies remain possible
• To manage combinatorial explosion dedicated combinatorial testing

techniques may be more suitable (e.g. “pairwise testing”).

Three possible values:
0Gb, 8Gb, or no limit.

Table has 2*2*3 = 12 choices
Not listed => impossible

4.3.2

28

Design Guidelines

1. Keep conditions independent
2. Use DC values to reduce number of variants
3. Avoid overlap between DC values
4. Try to add default column
5. If conditions are mutually exclusive consider using non-binary logic
6. If most conditions are non-binary consider combinatorial testing

29

JPacman Collision Decision Table?

• Conditions: collider / collidee type (classes)
• Rules: Collider / collidee combination
• Action: Die, eat, ...

• Two alternatives:
• Binary table (with disjoint conditions)
• Non-binary table (simpler)

30

The Collision Hierarchy

31

CollisionMap

collide(…)

Player
Collisions

Collision
Interaction

Map

Default
Interaction

Map

First: Test this
nice & simple

implementation

Then: Reuse
initial tests for this

tricky class

Collisions: “Parallel Class Hierarchy”
for Testing

32

CollisionMapTest

CollisionMap cmap

Player
Collisions

Test

Collision
Interaction

Map

Default
Interaction

Test

@BeforeEach:
cmap instance of
PlayerCollisions

@BeforeEach:
cmap instance of …

33

When should
Slack send
you a push

notification?

Rethinking Slack Notifications

• How many independent conditions?
• Use non-binary decisions for, e.g., notification

preferences (nothing, everything, mentions,
default)
• Create pairs of columns in which changing one

condition affects the outcome. If possible.
• Substantial duplication in full table. Richer logic

beneficial.

34

35

36

37

Decision Tables

• Concise model of complex decision logic

• Increase understanding of
• The application domain
• Your code base

• Cover essential logic in manageable test suite using MC/DC strategy

38

