Specification-based
and boundary testing

Mauricio F. Aniche
M.FinavaroAniche@tudelft.nl

4)

We need more
systematic and
rigorous ways to test

_ softwa re!<

SPECIFICATION Requirements
Models

STRUCTURAL Structure

(e.g., source code)

SPECIFICATION Requirements
Models

STRUCTURAL Structure

(e.g., source code)

/ \ What tests
A package should store a total number of

would you
kilos. There are small bars (1 kilo each) design?

and big bars (5 kilos each). We should
calculate the number of small bars to
use, assuming we always use big bars
before small bars.
Return -1 if it can't be done.

\ Input: small bars, big bars, total.

Inspired by https://codingbat.com/prob/p191363

Examples

Big Total Small bars to use
(output)
1 11 1

3
7 3 20 5
0 1 1
10 2 10 0

Partitions based on the requirements

* |dentify representative classes

A package should store a total * Only small bars
number of kilos. There are small * Only big bars
bars (1 kilo each) and big bars (5 * Small + big bars
kilos each). We should calculate * Not enough bars
the number of small bars to use, * Not from the specs: invalid
assuming we always use big bars number

before small bars. e Choose representative values
Return -1 if it can't be done.

* Exploit the knowledge to identify
trouble-prone regions of the input
space.

1) The total is higher than the
amount of small and big bars.

Ex: small =1, big =1, total = 10

3) Need for big and small
bars.

Ex: small =5, big =3, total =17

2) Only big bars.

Ex: small =5, big = 3, total =10
4) Only small bars.
Ex: small = 4, big = 2, total = 3

5) Invalid input.

Ex: small = 4, big = 2, total =-1

The category-partition method

in a nutshell

* |[dentify the parameters

SPECIAL ARTICLE

THE CATEGORY-PARTITION METHOD FOR
SPECIFYING AND GENERATING
FUNCTIONAL TESTS

* The characteristics of each parameter
* From the specs

* Not from the specs

A method for creating functional test suites has been developed in which a
test engineer analyzes the system specification, writes a series of formal test
specifications, and then uses a generator tool to produce test descriptions
from which test scripts are written. The advantages of this method are that
the tester can easily modify the test specificatiott when necessary, and can
control the complexity and number of the tests by annotating the tests
specification with constraints.

e Add constraints (minimize)

. .)
Remove invalid combinations

THOMAS J. OSTRAND and MARC J. BALCER

Reduce number of exceptional behaviors

The goal of functional testing of a software system is to Functional tests can be derived from the software’s
find discrepancies between the actual behavior of the specifications, from design information, or from the
implememed system’s functions and the desired behav- code itself. All three test sources provide useful infor-
jor as described in the system’s functional specification mation, and none of them should be ignored. Code-
. To achieve this goal requires first, that tests be exe- based tests relate to the modular structure, logic, con-
‘ 5 I | ° cuted for all of the system’s functions, and second, that trol flow, and data flow of the software. They have th
e e ra t e ° the tests be designed to maximize the chances of find- particular advantage that a program is a formal objec
I n ing errors in the software. Although a particular and it is therefore easy o make precise statements
S method or testing group may emphasize one Of the about the adequacy of thoroughness of code-based
other. these two aspects of testing are mutually comple- tests. Design-based tests relate to the programming al
mentary, and both are necessary for maximally produc- stractions, data structures, and algorithms used to co
tive testing. It is not enough merely to «gover all the struct the software. Specification based tosts relate d
functionality”; the {ests must be aimed at the most vul- rectly to what the software is supposed to do, and

nerable parts of the implementation.
{es testing boundar

For functional therefore are probably the most intuitively appealin;
testing, this implies testit oundary conditi i 1

onditions. specid type of functional tests,

/

_

We offer a discount during Christmas.

the total amount of the order,
If it’s not Christmas, no discount.

DY

If it’s Christmas, we give a 15% discount in

/

_

We offer a discount during Christmas.

the total amount of the order.
If it’s not Christmas, no discount.

DY

If it’s Christmas, we give a 15% discount in

Category Partition

. Use The current
Important
. date
variables:
e The current e Christmas
date e Not Christmas
e The raw

amount

The raw

amount

e Positive number
e /ero

e Negative number

Constraints

. Use The current The raw
Important
. date amount
variables:
e The current e Christmas e Positive number
date e Not Christmas e Zero
e The raw e Negative number

amount [exceptional]

Combinations / Tests

* Christmas
* Positive number
*/ero
* Negative number

* Not Christmas
e Positive number
e /ero

/

_

Partitions are representative classes of
our program, and they guide me
throughout the testing phase.

DY

Partitions

2) Only big bars.

Ex: small =5, big = 3, total = 10
Ex: small =5, big = 4, total = 15
Ex: small = 5, big =5, total = 20
Ex: small =5, big = 6, total = 25

Which one should |
pick? All?

Equivalent partitions

* If the case is really representative and independent,
any instance should do.

* ISTQB definition: “A portion of an input or output
domain for which the behavior of a component or
system is assumed to be the same, based on the
specification:”.

* We should try to reduce the human cost.
* Having lots of (repeated) tests increase the cost.

public int calculate(int small, int big, int total) {
int maxBigBoxes = total / 5;
int bigBoxesWeCanUse =
maxBi1gBoxes < big ? maxBigBoxes : big;

total -= (bigBoxesWeCanUse * 5);

1f(small <= total)
return -1;
return total;

¥

Need for big and small bars
Try this input: (5, 3, 17). g
Output should be: 2

/Your tests were not enoughm

If | provide
small =2
big =3
total =17

It returns -1,
but it should be 2!

& /

public int calculate(int small, int big, int total) {
int maxBigBoxes = total / 5;
int bigBoxesWeCanUse =
maxBi1gBoxes < big ? maxBigBoxes : big;

total -= (bigBoxesWeCanUse * 5);

1f(small <= total)
return -1;
return total;

¥

Can you find the bug?
Try the input: (2, 3, 17).

public int calculate(int small, int big, int total) {
int maxBigBoxes = total / 5;
int bigBoxesWeCanUse =
maxBi1gBoxes < big ? maxBigBoxes : big;

total -= (bigBoxesWeCanUse * 5);

1f(small <= total)
returnm—rI;
return total;

¥

public int calculate(int small, int big, int total) {
int maxBigBoxes = total / 5;
int bigBoxesWeCanUse =
maxBi1gBoxes < big ? maxBigBoxes : big;

total -= (bigBoxesWeCanUse * 5);

1f(small < total)
return -1;
return total;

1) The total is higher than the 2) Only big bars.

amount of small and big bars. Ex: small = 5, big = 3, total = 10

Ex: small =1, big =1, total = 10
4) Only small bars.
Ex: small = 4, big = 2, total = 3

3) Need for big and small

bars.
Ex: small =5, big =3, total =17 \

(2,3,17) belongs to this partition!

5) Invalid input.

Ex: small = 4, big = 2, total =-1

4 h

But.. But... Does this mean that
thinking about partitions is not
enough? :(

_

Partition

Boundary!

Hmm, with these inputs,
small = 2 is on the boundary
of the required number of
small bars!

small =2 Small = 1, not possible
big =3 Small = 2, possible
total = 17 Small = 3, possible

Hmm, ok, let me think
about the boundaries
for each of these

partitions, and do some
\ boundary testing.

1) The total is higher than the amount of
small and big bars.

2) Only big bars.
3) Need for big and small bars.
4) Only small bars.

The total is higher than the
[9/ amount of small and big bars.
Ex: small =1, big =1, total = 10

small =1, big=1, total =5, =0
small =1, big=1, total=6, =1

small =1, big=1, total =7, =-1
small =1, big=1, total =8, =-1

[9/ Only big bars.

Ex: small =5, big = 3, total = 10
small =5, big =0, total =10, =-1
small =5, big=1, total =10, =5

small =5, big =2, total =10, =0
small =5, big =3, total =10, =0

[9/ Need for big and small bars.

Ex: small =5, big =3, total =17

small =0, big =3, total =17, =-1
small =1, big =3, total =17, =-1

small = 2, big = 3, total =17, =
small =3, big =3, total=17,=2

small =2, big = 3, total =14, =-1
small =3, big = 3, total =14, =-1

small = 4, big = 3, total = 14, =4
small =5, big = 3, total =14, =4

All big bars

Not all big bars

[9/ Only small bars.

Ex: small = 4, big = 2, total = 3
small =4, big =2, total =3, =3
small =3, big=2, total =3, =3

small =2, big=2, total =3, =-1
small =1, big=2, total =3, =-1

K If the score is between\

100 and 200, the player
gets 50 bonus points.

™\ * If the total ordering is
Let me test it! above $100.00,
| do “off-by-one” shipping costs is $5.00.
mistakes all the K

Vtime! p

X >=100

X>100

score >= 100

* On point: Exactly on boundary

* In point: Makes the condition true
* Out point: Makes the condition false
e Off point:

* Flips the outcome for on point and
/s as close to boundary as possible

Onis 100; Inis e.g. 200;
Out is e.g. 50; Off is 99.

Multiple boundaries?

A simplified Domain-Test'\ng Strategdy

BINGGHIANG JENG
gun Yat-Sen University

and
ELAINE J. WEYUKER
New York University

A Simpliﬁed form of domain testing 18 pmposed that 18 suhstzmtia\ly cheaper than previuus\y
proposed versions, and is applicable to a much larger class of programs- In particular, the
traditional restrictions to prograims containing only linear predicates and variables defined over

continuous domains are removed. In addition, an approach to path selection s proposcd to be
used 11 conjunction with the new strategy-

Categories and Subject Descriptors: D.2.5 [Software Eng’meering}: Testing and Debugging

General Terms: Rehability. Theory, Verification

Additional Key Words and Phrases: Domain testing. software testing

- — — - — /7//

1. \NTRODUCT\ON

Domain testing is & fault-based software—testing strategy proposed by White
and Cohen {19781 Testers have frequently observed that subdomain bound-
aries are particularly fault-prone and should therefore be carefully checked.
Pomain testing was pmposed as a relatively sophisticated form of pboundary
value testing, and is applicablo whenever the input domain is subdivided into
subdomains by the program’s decision statements.

In this paper, & simplified version of domain testing is described which
removes several limitations associated with earlier domain-testing strategies.
In particu\ar, our strategy is applicable to arbitrary types of predicat,es,
detects both linear and nonlinear errors, for both discrete and continuous
variable spaces- Tn addition, We will show that our new technique requires
much smaller test suites than earlier versions, an will argue that its
offectiveness 18 comparable to, and in some cases superior to, the others.

1y NASA grant NAG-1-1238
S

Simplified domain-testing strategy

* Handle boundaries independently

* For each boundary, pick on and off
point

* While testing one boundary, use
varying in points for the
remaining boundaries.

e Use domain matrix.

Boundary conditions for "x > 0 && x <= 10 && y >=1.0"

test cases (x, y)

Variable |Condition |type t1 t2 t3 t4 t5 t6
X >0 on
off
<=10 on
off
typical in
y >=1.0 on
off
typical In

Boundary conditions for|"x > 0 &8 x <= 10 && y >= 1.0/

test cases (X, Y)

Variable |Condition |type t1 t2 t3 t4 t5 t6
X >0 on
off
<=10 on
off
typical in
y >=1.0 on
off
typical In

Boundary conditions for " x > 0 && x<=10 && y >= 1.0"

test cases (x, y)

Variable |Condition |type t1 t2 3 t4 t5 t6
X >0 on 0
off 1
<=10 on 10
off 11
typical in 6
y >=1.0 on 1.0
off 0.9
typical in 10.0] 16.0] 109.3] 2390.2

Boundary conditions for " x > 0 && x<=10 && y >= 1.0"

tact racoe (v v
- - R \ 7 y

=

Variable |Condition |type t1 t2 t3 t4 t5 t6
X >0 on 0
off 1
<=10 on 10
off 11
typical in 6
y >=1.0 on 1.0
off 0.9
typical in 10.0] 16.C] 109.3] 2390.2

Boundary conditions for " x > 0 && x<=10 && y >= 1.0"

test cases (x, y)

Variable |Condition |type t1 t2 t3 t4 t5 t6
X >0 on 0
off 1
<=10 on 10
off 1°
typical in 6
y >=1.0 on 1.0
off 0.9
typical in 10.0] 16.0 109.3] 2390.z7] |

JUnit for multiple data points?

* 6 test cases, each with three values
< x-value, y-value, outcome >

* For each test case:
* Check that with given inputs method produces desired output.

* Hand-code in loop?

Use JUnit 5
@ParameterizedTest

VES:
*x Verify that squares at key positions are properly set.
*x @param x Horizontal coordinate of relevant cell.
x @param y Vertical coordinate of relevant cell.
*/
@ParameterizedTest
@CsvSource({
"0, 0,
"1, 2%,
IIO' 1Il
})
void testSquareAt(int x, int y) {
assertThat (board.squareAt(x, y)).isEqualTo(grid([x] [y]);
}

Open & Closed Boundaries

Closed boundary Open boundary
* Score >= 200 * Score > 200

46

Multiple choice

Which of the following statements is true

A. An out point cannot also be an on point
B.
C
D

The in point is included in the set of on points
If the on point is an in point, the off point is an out point.

. An out point can never be an off point

Multiple choice

Which of the following statements is true

A. An out point cannot also be an on point

B. Thein pointis included in the set of on points
C.

D. An out point can never be an off point

If the on point is an in point, the off point is an out point.

48

Chapter 7
Boundary conditions:
the Correct way

Jeff Langr

Hunt
with AndY
& Dave Thomas

o 4son Pfalzer
t;:::l‘:nmm pavidson pfa

[Clorrect: Conformance

* Many data elements must conform to a specific format.
* Example: e-mail (always name@domain).

* Test when your input is not in conformance with what is
expected.

Clo]rrect: ordering

* The order of the data might influence the output.
* What happens if the list is ordered? Unordered?

Co[r]|rect: range

* Inputs should usually be within a certain range.

* Example: Age should always be greater than 0 and smaller
than 120.

* In most programming languages, basic types give you
more than you need, e.g., int when you just need a
number between 1-100.

Cor|rlect: reference

* When testing a method, consider:
* What it references outside its scope
* What external dependencies it has
 Whether it depends on the object being in a certain state
* Any other conditions that must exist

Corr|e]ct: existence

* Does something really exist? What if it doesn’t?

Corre[c]t: cardinality

* Off-by-one errors

* Loops:
* /ero
* One
* Many

Correc|t]: time

* Ordering in time
* What happens if | forget to invoke a() before b()?

* Timeouts

* Date/Time operations
* Should we use UTC? GMT?

* Concurrency

Random vs Partition testing

* Would it be better to simply test random inputs?
 Would it be more effective or less effective?

Chapter 10 of the Software Testing and Analysis: Process, Principles, and Techniques. Mauro Pezze, Michal Young, 1st edition, Wiley, 2007.

Random testing Partition testing

« If generating random inputs is * Test designers usually exploit some

cheap, then even with a small knowledge of application semantics to
budget (e.g., 1 day), we’d generate choose samples that are more likely to
millions of tests. A human would include "special" or trouble-prone
only generate a few. regions of the input space.

e Random testing is an ineffective e Partition testing is more expensive than
way to find singularities in the random testing.

large input space.

Given a fixed budget, the optimum may not lie in only partition testing or only
random testing, but in some mix that makes use of available knowledge.

Chapter 10 of the Software Testing and Analysis: Process, Principles, and Techniques. Mauro Pezze, Michal Young, 1st edition, Wiley, 2007.

- U ﬂ Cth n a ‘ te Stl n g | n Functional specifications
arge systems

Independently testable features

* Functional specifications can be large and
complex. Partition the specifications into
features that can be tested separately.

 An ITF is a feature that can be tested Identify partitions
independently of other functionalities of the
software.

* Given an ITF, apply partition testing.

) Test case specifications
* |nstantiate (concrete and executable) test cases. :

Test cases

Adapted from Chapter 10 of the Software Testing and Analysis: Process, Principles, and Techniques. Mauro Pezze, Michal Young, 1st edition, Wiley, 2007.

Summary

* Functional (specification-based) tests
* Partition testing

* The Category-Partition method

* Equivalence class

* Boundary tests and boundary analysis
* Multiple boundary tests

* The CORRECT way

* Random testing vs Partition tests

References

* Chapter 4 of the Foundations of software testing: ISTQB certification. Graham,
Dorothy, Erik Van Veenendaal, and Isabel Evans, Cengage Learning EMEA, 2008.

* Chapter 7 of Pragmatic Unit Testing in Java 8 with Junit. Langr, Hunt, and Thomas.
Pragmatic Programmers, 2015.

* Chapter 10 of the Software Testing and Analysis: Process, Principles, and
Techniques. Mauro Pezze, Michal Young, 1st edition, Wiley, 2007.

e Ostrand, T. J., & Balcer, M. J. (1988). The category-partition method for specifying
and generating functional tests. Communications of the ACM, 31(6), 676-686.

