
Specification-based
and boundary testing

Maurício F. Aniche
M.FinavaroAniche@tudelft.nl

We need more
systematic and

rigorous ways to test
software!

SPECIFICATION Requirements
Models

Structure
(e.g., source code)

Requirements
Models

Structure
(e.g., source code)

SPECIFICATION

A package should store a total number of
kilos. There are small bars (1 kilo each)
and big bars (5 kilos each). We should
calculate the number of small bars to
use, assuming we always use big bars

before small bars.
Return -1 if it can't be done.

Input: small bars, big bars, total.

What tests
would you

design?

Inspired by https://codingbat.com/prob/p191363

Examples

Small Big Total Small bars to use
(output)

1 3 11 1
7 3 20 5
2 0 1 1
10 2 10 0

Partitions based on the requirements

• Identify representative classes
• Only small bars
• Only big bars
• Small + big bars
• Not enough bars
• Not from the specs: invalid

number
• Choose representative values
• Exploit the knowledge to identify

trouble-prone regions of the input
space.

A package should store a total
number of kilos. There are small
bars (1 kilo each) and big bars (5
kilos each). We should calculate
the number of small bars to use,
assuming we always use big bars

before small bars.
Return -1 if it can't be done.

1) The total is higher than the
amount of small and big bars.

Ex: small = 1, big = 1, total = 10

2) Only big bars.
Ex: small = 5, big = 3, total = 10

3) Need for big and small
bars.

Ex: small = 5, big = 3, total = 17

4) Only small bars.
Ex: small = 4, big = 2, total = 3

5) Invalid input.
Ex: small = 4, big = 2, total = -1

• Identify the parameters
• The characteristics of each parameter
• From the specs
• Not from the specs

• Add constraints (minimize)
• Remove invalid combinations
• Reduce number of exceptional behaviors

•Generate combinations

The category-partition method
(in a nutshell)

We offer a discount during Christmas.
If it’s Christmas, we give a 15% discount in

the total amount of the order.
If it’s not Christmas, no discount.

We offer a discount during Christmas.
If it’s Christmas, we give a 15% discount in

the total amount of the order.
If it’s not Christmas, no discount.

Category Partition

Two
important
variables:

• The current
date

• The raw
amount

The current
date

• Christmas
• Not Christmas

The raw
amount

• Positive number
• Zero
• Negative number

Constraints

Two
important
variables:

• The current
date

• The raw
amount

The current
date

• Christmas
• Not Christmas

The raw
amount

• Positive number
• Zero
• Negative number

[exceptional]

• Christmas
• Positive number
• Zero
• Negative number

• Not Christmas
• Positive number
• Zero

Combinations / Tests

Partitions are representative classes of
our program, and they guide me

throughout the testing phase.

Partitions

2) Only big bars.
Ex: small = 5, big = 3, total = 10
Ex: small = 5, big = 4, total = 15
Ex: small = 5, big = 5, total = 20
Ex: small = 5, big = 6, total = 25
…

Which one should I
pick? All?

Equivalent partitions

• If the case is really representative and independent,
any instance should do.
• ISTQB definition: “A portion of an input or output

domain for which the behavior of a component or
system is assumed to be the same, based on the
specification:”.

•We should try to reduce the human cost.
•Having lots of (repeated) tests increase the cost.

public int calculate(int small, int big, int total) {
int maxBigBoxes = total / 5;
int bigBoxesWeCanUse =

maxBigBoxes < big ? maxBigBoxes : big;

total -= (bigBoxesWeCanUse * 5);

if(small <= total)
return -1;

return total;
}

Need for big and small bars
Try this input: (5, 3, 17).
Output should be: 2

Your tests were not enough!
If I provide
small = 2

big = 3
total = 17

It returns -1,
but it should be 2!

public int calculate(int small, int big, int total) {
int maxBigBoxes = total / 5;
int bigBoxesWeCanUse =

maxBigBoxes < big ? maxBigBoxes : big;

total -= (bigBoxesWeCanUse * 5);

if(small <= total)
return -1;

return total;
}

Can you find the bug?
Try the input: (2, 3, 17).

public int calculate(int small, int big, int total) {
int maxBigBoxes = total / 5;
int bigBoxesWeCanUse =

maxBigBoxes < big ? maxBigBoxes : big;

total -= (bigBoxesWeCanUse * 5);

if(small <= total)
return -1;

return total;
}

public int calculate(int small, int big, int total) {
int maxBigBoxes = total / 5;
int bigBoxesWeCanUse =

maxBigBoxes < big ? maxBigBoxes : big;

total -= (bigBoxesWeCanUse * 5);

if(small < total)
return -1;

return total;
}

1) The total is higher than the
amount of small and big bars.

Ex: small = 1, big = 1, total = 10

2) Only big bars.
Ex: small = 5, big = 3, total = 10

3) Need for big and small
bars.

Ex: small = 5, big = 3, total = 17

4) Only small bars.
Ex: small = 4, big = 2, total = 3

5) Invalid input.
Ex: small = 4, big = 2, total = -1

(2,3,17) belongs to this partition!

But.. But… Does this mean that
thinking about partitions is not

enough? :(

Partition

Boundary!

Hmm, with these inputs,
small = 2 is on the boundary
of the required number of

small bars!

small = 2
big = 3

total = 17

Small = 1, not possible
Small = 2, possible
Small = 3, possible

Hmm, ok, let me think
about the boundaries

for each of these
partitions, and do some

boundary testing.

1) The total is higher than the amount of
small and big bars.
2) Only big bars.
3) Need for big and small bars.
4) Only small bars.

The total is higher than the
amount of small and big bars.

Ex: small = 1, big = 1, total = 10

small = 1, big = 1, total = 5, = 0
small = 1, big = 1, total = 6, = 1

small = 1, big = 1, total = 7, = -1
small = 1, big = 1, total = 8, = -1

Only big bars.
Ex: small = 5, big = 3, total = 10

small = 5, big = 0, total = 10, = -1
small = 5, big = 1, total = 10, = 5

small = 5, big = 2, total = 10, = 0
small = 5, big = 3, total = 10, = 0

Need for big and small bars.

Ex: small = 5, big = 3, total = 17

small = 0, big = 3, total = 17, = -1
small = 1, big = 3, total = 17, = -1

small = 2, big = 3, total = 17, = 2
small = 3, big = 3, total = 17, = 2
small = 2, big = 3, total = 14, = -1
small = 3, big = 3, total = 14, = -1

small = 4, big = 3, total = 14, = 4
small = 5, big = 3, total = 14, = 4

1

2

Al
l b

ig
 b

ar
s

No
t a

ll
bi

g
ba

rs

Only small bars.
Ex: small = 4, big = 2, total = 3

small = 4, big = 2, total = 3, = 3
small = 3, big = 2, total = 3, = 3

small = 2, big = 2, total = 3, = -1
small = 1, big = 2, total = 3, = -1

• If the score is between
100 and 200, the player
gets 50 bonus points.

• If the total ordering is
above $100.00,
shipping costs is $5.00.

• …

Let me test it!
I do “off-by-one”
mistakes all the

time!

• If the score is between
100 and 200, the player
gets 50 bonus points.

• If the total ordering is
above $100.00,
shipping costs is $5.00.

• …

Let me test it!
I do “off-by-one”
mistakes all the

time!

Boundary analysis

OUT-points IN-points

X >= 100

100 10199…

ON-
point

OFF-
point

X > 100

OUT-points

100 10199…

ON-
point

OFF-
point

IN-points

score >= 100

• On point: Exactly on boundary
• In point: Makes the condition true
• Out point: Makes the condition false
• Off point:

• Flips the outcome for on point and
• Is as close to boundary as possible

On is 100; In is e.g. 200;
Out is e.g. 50; Off is 99.

Multiple boundaries?

Simplified domain-testing strategy

• Handle boundaries independently
• For each boundary, pick on and off

point
• While testing one boundary, use

varying in points for the
remaining boundaries.
• Use domain matrix.

JUnit for multiple data points?

• 6 test cases, each with three values
< x-value, y-value, outcome >

• For each test case:
• Check that with given inputs method produces desired output.

• Hand-code in loop?

Use JUnit 5
@ParameterizedTest

Open & Closed Boundaries

Closed boundary
• Score >= 200

• On point = 200

• Off point = 199

Open boundary
• Score > 200

• On point = 200

• Off point = 201

46

Multiple choice

Which of the following statements is true

A. An out point cannot also be an on point
B. The in point is included in the set of on points
C. If the on point is an in point, the off point is an out point.
D. An out point can never be an off point

47

Multiple choice

Which of the following statements is true

A. An out point cannot also be an on point
B. The in point is included in the set of on points
C. If the on point is an in point, the off point is an out point.
D. An out point can never be an off point

48

Chapter 7
Boundary conditions:
the Correct way

[C]orrect: Conformance

•Many data elements must conform to a specific format.
• Example: e-mail (always name@domain).

• Test when your input is not in conformance with what is
expected.

C[o]rrect: ordering

• The order of the data might influence the output.
•What happens if the list is ordered? Unordered?

Co[r]rect: range

• Inputs should usually be within a certain range.
• Example: Age should always be greater than 0 and smaller

than 120.
• In most programming languages, basic types give you

more than you need, e.g., int when you just need a
number between 1-100.

Cor[r]ect: reference

•When testing a method, consider:
•What it references outside its scope
•What external dependencies it has
•Whether it depends on the object being in a certain state
• Any other conditions that must exist

Corr[e]ct: existence

• Does something really exist? What if it doesn’t?

Corre[c]t: cardinality

• Off-by-one errors
• Loops:
• Zero
• One
• Many

Correc[t]: time

• Ordering in time
• What happens if I forget to invoke a() before b()?

• Timeouts
• Date/Time operations
• Should we use UTC? GMT?

• Concurrency

Random vs Partition testing

• Would it be better to simply test random inputs?
• Would it be more effective or less effective?

Chapter 10 of the Software Testing and Analysis: Process, Principles, and Techniques. Mauro Pezzè, Michal Young, 1st edition, Wiley, 2007.

Random testing

• If generating random inputs is
cheap, then even with a small
budget (e.g., 1 day), we’d generate
millions of tests. A human would
only generate a few.

• Random testing is an ineffective
way to find singularities in the
large input space.

Partition testing
• Test designers usually exploit some

knowledge of application semantics to
choose samples that are more likely to
include "special" or trouble-prone
regions of the input space.

• Partition testing is more expensive than
random testing.

Given a fixed budget, the optimum may not lie in only partition testing or only
random testing, but in some mix that makes use of available knowledge.

Chapter 10 of the Software Testing and Analysis: Process, Principles, and Techniques. Mauro Pezzè, Michal Young, 1st edition, Wiley, 2007.

Functional specifications

Independently testable features

Identify partitions

Test case specifications

Test cases

• Functional specifications can be large and
complex. Partition the specifications into
features that can be tested separately.

• An ITF is a feature that can be tested
independently of other functionalities of the
software.

• Given an ITF, apply partition testing.
• Instantiate (concrete and executable) test cases.

Functional testing in
large systems

Adapted from Chapter 10 of the Software Testing and Analysis: Process, Principles, and Techniques. Mauro Pezzè, Michal Young, 1st edition, Wiley, 2007.

Summary

• Functional (specification-based) tests
• Partition testing
• The Category-Partition method
• Equivalence class
• Boundary tests and boundary analysis
• Multiple boundary tests
• The CORRECT way
• Random testing vs Partition tests

References

• Chapter 4 of the Foundations of software testing: ISTQB certification. Graham,
Dorothy, Erik Van Veenendaal, and Isabel Evans, Cengage Learning EMEA, 2008.
• Chapter 7 of Pragmatic Unit Testing in Java 8 with Junit. Langr, Hunt, and Thomas.

Pragmatic Programmers, 2015.
• Chapter 10 of the Software Testing and Analysis: Process, Principles, and

Techniques. Mauro Pezzè, Michal Young, 1st edition, Wiley, 2007.
• Ostrand, T. J., & Balcer, M. J. (1988). The category-partition method for specifying

and generating functional tests. Communications of the ACM, 31(6), 676-686.

