
Software testing
and Quality
Engineering

Lecture 2: Foundations

CSE1110
Maurício Aniche, Arie van Deursen

Delft University of Technology

1

Ka
zi

m
ir

M
al

ev
ic

h,
 E

id
gh

tR
ed

 R
ec

ta
ng

le
s,

 W
ik

ip
ed

ia

https://en.wikipedia.org/wiki/en:Kazimir_Malevich

Labwork Announcements

• What should be in the report?
• Answers to all the questions!

• Today’s (Friday April 26) labwork session?
• You are all welcome to join today, even if it is not your group

2

Labwork Announcements: Peer Review

• Peer review
• Grade your self, given rubrics
• Grade a randomly assigned (anonymous) students

• Make sure your code (comment) does not reveal your identity
• Be careful in your comments.
• Double check automatically generated javadocs...

• Upload zipped (src + pdf) file into the “peer” system.

• Conducting peer review is mandatory
• Timing is tight: All deadlines are strict

• Please don’t fail your BSA by missing a deadline
3

Exemptions only via
study counselor

Labwork: Group Creation Deadline

• Today, 1pm – FIRM DEADLINE

• Be in a single group

• With exactly two members

• You can already start from github/serg-delft/jpacman

4

Running Checkstyle in IntelliJ?

5

Might Fail when Run with “Check Project”

6

Run “check module instead”
Exclude resources folder from checkstyle.

7

8

Sharing Changes With the “Origin” Remote

9

“origin”
Repository

Alice
Repository

clone

commit

push

Bob
Repository

clone

pull

push
pull

Change

add

Stage
commit

add

Change Stage

10

Alice
Repository

Your laptop

“origin”
Repository

EWI gitlab server

“upstream”
Repository

github.com/serg-delft/jpacman

cloned

Somewhat safer

git status
if there is any change commit first
if the current branch isn’t master checkout master

gradle test
always make sure you run your test before any change
now your all set to merge in more changes

git remote add ...
git fetch ...
git merge ...

11

https://learngitbranching.js.org/

1
2

https://learngitbranching.js.org/

13

Terminology: Failure

“Deviation of the component or system from its expected delivery,
service or result”

“Manifested inability of a system
to perform required function”

1.1.2

14

15

Windows failure leads to “blue screen of death”.
16

Terminology: Defect / Fault

“Flaw in component or system
that can cause the component or system
to fail to perform its required function”

“A defect, if encountered during execution,
may cause a failure of the component or system”

Synonym: Fault

1.1.2

17

18

http://avandeursen.com/2014/02/22/gotofail-security/

Fault in Apple’s Secure Socket Layer code
19

http://avandeursen.com/2014/02/22/gotofail-security/

Terminology: Error

“A human action
that produces an incorrect result”

Synonym: Mistake

1.1.2

20

21

Faults, Failures, and Bugs

• Failure:
• Manifested inability of a system

to perform required function.

• Defect (fault):
• missing / incorrect code

• Error (mistake)
• human action producing fault

• And thus:
• Testing: Attempt to trigger failures
• Debugging: Attempt to find faults given a failure

“bug”

1.1.2

Travel Information:
Fault or Failure?

22

Travel information failure to deliver useful information,
caused by fault in code

Travel Information:
Fault or Failure?

23

Principles of Testing #1

• Testing shows the presence of defects

• Testing does not show
the absence of defects!

• “no test team can achieve
100% defect detection
effectiveness” (Black et al)

24

1.3.1

Principles of Testing #2:
Exhaustive Testing is ….....……….

25

26

Principle #2: Exhaustive Testing is Impossible
• A simple program: 3 inputs, 1 output
• a,b,c: 32 bit integers
• trillion test cases / s.

All plants dead

All oceans dry

Tests done (2.5 bill. y)

1.3.2

Principles of Testing #3: Test Early

• Start testing as early as possible
• To let tests guide design
• To get feedback as early as possible
• To find bugs when they are cheapest to fix
• To find bugs when have caused least damage

27

1.1.2
1.3.3

Faults can be introduced
at any moment in the

software development
process

28

Finding faults in different
development phases may
require different types of

testing

Cost to Repair:
Early Discovery Pays Off

29

1
2

4

8

16

Requirement Design Unit test Acceptanc test Post release

1.1.2

Principles of Testing #4:
Defects are likely to be Clustered

• “Hot” components requiring frequent
change, bad habits, poor developers,
tricky logic, business uncertainty,
innovative, size, ….

• Pareto Principle / Law of vital few:
• 80% of effects come from 20% of causes

• Use to focus test effort

“Pareto Diagram”
for an IBM system:

70% of defects caused by
2 components.

30

If you find a bug, keep
on searching in its

‘neighborhood’

Principles of Testing #5:
Is there one best test method for my project?

The pesticide paradox:

Every method you use to prevent or find bugs
leaves a residue of subtler bugs

against which those methods are ineffectual.

• Re-running the same test suite again and again on a
changing program gives a false sense of security

• We need variation in testing
31

Principles of Testing #6:
Is there a single test method for any project?

• Testing is context-dependent

32

Principles of Testing #7
Absence-of-errors Fallacy

There is more to success than absence of errors

Thorough understanding of business value is necessary

“Building the software right versus building the right software.”

“Finding and removing defects is not a way to improve the overall
quality or performance of a system” – Russ Ackoff

1.3.7

33https://embeddedartistry.com/blog/2019/2/5/beyond-continual-improvement

https://embeddedartistry.com/blog/2019/2/5/beyond-continual-improvement

https://www.youtube.com/watch?v=H2tuKiiznsY

https://www.youtube.com/watch?v=H2tuKiiznsY

35http://www.boeing.com/commercial/737max/737-max-software-updates.page

http://www.boeing.com/commercial/737max/737-max-software-updates.page

Some testing quotes

• “completed a 120 737 test flights”
• “totaling more than 203 hours of air time”
• “with the updated system”
• “with our leaders on board the airplane”
• “operating as designed across a range of flight conditions”
• ”have experienced the new software through simulator sessions”
• “The team of Boeing pilots, engineers, technical experts and our

partners were comprehensively testing the software

36

Revisiting the Principles?

1. Testing cannot show absence of bugs
2. Exhaustive testing is impossible
3. Testing needs to start early
4. Defects tend to be clustered
5. Pesticide paradox yields test methods ineffective
6. Testing is context-dependent
7. There is more to quality than absence of defects

37

38

https://www.vox.com/2019/4/5/18296646/boeing-
737-max-mcas-software-update

https://embeddedartistry.com/blog/2019/4/1/what-can-
software-organizations-learn-from-the-boeing-737-max-saga

https://www.vox.com/2019/4/5/18296646/boeing-737-max-mcas-software-update
https://embeddedartistry.com/blog/2019/4/1/what-can-software-organizations-learn-from-the-boeing-737-max-saga

Psychology of Testing

• We are all biased

• Independence of testing required:
• From self-testing to external approval
• Testers with different backgrounds

• Good knowledge of rigorous techniques and procedures required

1.5

39

Cognitive Bias

• “System 1”: Fast, instinctive,
emotional.
• "System 2”: slower, more

deliberative, and more logical.

• System 2 requires effort and is
happy to let System 1 do the
work

40

Example of Cognitive Bias

• “What You See is All There Is” (WYSIATI)
• Being satisfied with the evidence you see.

• Key problem in software engineering:
• “It works on my machine”
• “I’ve tried it, and it works”
• “All 100 tests pass, we can ship”

41

FAA and the 737 MAX

• “The FAA delegates some certification and technical assessments to
airplane manufacturers, citing lack of funding and resources to carry
out all operations internally”

• FAA safety engineer:
• “We were asked by management to re-evaluate what would be delegated.

Management thought we had retained too much at the FAA.”

• “There wasn’t a complete and proper review of the documents.
Review was rushed to reach certain certification dates.”

42https://embeddedartistry.com/blog/2019/4/1/what-can-software-organizations-learn-from-the-boeing-737-max-saga

https://embeddedartistry.com/blog/2019/4/1/what-can-software-organizations-learn-from-the-boeing-737-max-saga

43

ACM Software Engineering Code of Ethics
1. PUBLIC - Software engineers shall act consistently with the public interest.
2. CLIENT AND EMPLOYER - Software engineers shall act in a manner that is in the best interests

of their client and employer consistent with the public interest.
3. PRODUCT - Software engineers shall ensure that their products and related modifications

meet the highest professional standards possible.
4. JUDGMENT - Software engineers shall maintain integrity and independence in their

professional judgment.
5. MANAGEMENT - Software engineering managers and leaders shall subscribe to and promote

an ethical approach to the management of software development and maintenance.
6. PROFESSION - Software engineers shall advance the integrity and reputation of the profession

consistent with the public interest.
7. COLLEAGUES - Software engineers shall be fair to and supportive of their colleagues.

8. SELF - Software engineers shall participate in lifelong learning regarding the practice of their
profession and shall promote an ethical approach to the practice of the profession.

44

1.6

45
https://www.acm.org/code-of-ethics

https://www.acm.org/code-of-ethics

46
https://www.acm.org/code-of-ethics

https://www.acm.org/code-of-ethics

First Student-Provided Question!

Which test level corresponds to testing a system to check if individual
component are fulfilling functionalities?

A. Acceptance Testing
B. Integration Testing
C. System Testing
D. Unit Testing

47

First Student-Provided Question!

Which test level corresponds to testing a system to check if individual
component are fulfilling functionalities?

A. Acceptance Testing
B. Integration Testing
C. System Testing
D. Unit Testing

48

Which of the Following is Correct?

A. Finding a mistake requires executing a program
B. Finding a failure requires executing a program
C. Finding a defect requires executing a program.
D. Mistakes, defects, and failures can all be found without executing

the program.

49

Which of the Following is Correct?

A. Finding a mistake requires executing a program
B. Finding a failure requires executing a program
C. Finding a defect requires executing a program.
D. Mistakes, defects, and failures can all be found without executing

the program.

50

Software Life Cycle [Chapter 2]

• Period of time that
• begins when a software system is conceived
• ends when the system is no longer available for use.

• Phases: concept development, requirements, design,
implementation, test, installation, retirement

• Phases may overlap and be performed iteratively

Ch.2
Gloss.

51

2.1.2

52

User
requirements

System
requirements

Global
design

Detailed
design

Implementation

Component
test execution

Integration
test execution

System
test execution

Acceptance
test execution

Operational
system

Need, wish,
policy, law

decom
position

Asse
mbly

 /
Int

eg
rat

ion
 an

d t
es

t

prepare

prepare

prepare

prepare

Validation
Verification

Time 53

54

Verification versus Validation

Verification:
does the software system meet the requirements specifications?

Are we building the software right?

Validation:
does the software system meet the user's real needs?

Are we building the right software?

2.1.1

When you get what you want …

… but not what you need?

Test Levels

• Component (unit) testing.
Units in isolation
• Integration testing

Interaction between units
• System testing

System-level properties
• Acceptance testing

Focus on user needs

55

2.2

Test levels in right leg of V model

Systems Thinking / Russ Ackoff

• The defining properties of a system are properties of the whole which
none of its parts have

• A system is not the sum of the behavior of its parts, it is a product of
their interactions

• The performance of a system depends on how the parts fit, not how
they act taken separately

56

https://embeddedartistry.com/blog/2019/2/5/beyond-continual-improvement

https://embeddedartistry.com/blog/2019/2/5/beyond-continual-improvement

Test Types

Group of test activities
Aimed at testing a component or system

Focused on a specific test objective

2.3

57

Test Types

• Testing of Function
• Functional testing, black box testing

• Testing of software product characteristics
• Non-functional testing

• Testing of software structure / architecture
• Structural testing, white box testing

• Testing related to changes
• Confirmation vs Regression testing

2.3

59

Regression Testing

• Testing of a previously tested program
• Following modification
• To ensure that defects have not been introduced
• In unchanged areas of the software
• As a result of the changes made.

• Performed when the software or its environment is changed.

• Continuous delivery? Automate regression testing

2.3.4

60

Testing As Software Evolves

• The norm in software development!
• Many updates per day in modern web apps
• Current cars (wireless updates)
• Formula 1 (every two weeks)
• Aircraft (737 max compatibility)

• Dependency and compatibility management are key

• Direct test efforts to changed software
• Confirm change works as expected, without regressions.
• Automated regression testing where possible

61

Maintenance Testing (ISTQB)

• Testing after a system is stable and deployed
• Test changes to an operational system
• Test impact of changed environment to an operational system

(e.g. security updates of libraries used)

• Impact analysis:
• Determine which parts are affected by change
• Conduct regression testing for those.

2.4

62

Chapter 2 Key Points

• Software development follows life cycle activities
• The V-Model helps reason about verification vs validation,

decomposition vs composition, and construction vs testing.
• We test at different levels
• Different test types target specific test objectives
• Iterative projects do continuous regression testing and thus maximize

test automation

64

Static versus Dynamic Testing

Static Testing:
Testing of a component or system

at specification or implementation level
without execution of software
(e.g., reviews or static analysis)

Dynamic Testing:
Testing that involves the execution

of the software of a component or system.

3.1

Formal Reviews: Phases & Roles

Review Phases
• Planning
• Kick-off
• Preparation
• Review meeting
• Rework
• Follow-up

Reviewing Roles
• Moderator
• Author
• Scribe
• Reviewers
• Managers

3.2.1
3.2.2

“If you did not document it,
you did not do it!”
• Inspections by Government & Notified Bodies:

• If you do not follow regulation & your internal procedures
(QMS), you cannot guarantee safety & effectiveness.

• Consequences:
• Delivery stop for sites outside USA and/or close down for

sites in the USA.
• In case of safety (patient) issues & not sticking to the law:

Jail for upper mgt.

• At Philips:
• Inspection Back-office to answer questions fast & accurately

67

68Revision V1.6 22-Feb-2011

CV – IVVR –Process Framework

Procedures

Process

Work
instructions

Forms &
Templates

Guidelines
& Tutorials

Philips Quality Management System

Types of Review

• Walkthrough
• Author in the lead

• Technical Review:
• Technical meeting to achieve consensus

• Inspection:
• Peer review of documents
• Relies on ‘visual inspection’ (= reading)
• To detect defects / violations

3.2.3

Why Do Programmers Do Code Reviews?

What Programmers Say:

Versus What They Actually Do:

http://alex.nederlof.com/blog/2013/05/24/the-truth-about-code-reviews/

75

https://www.michaelagreiler.com/code-reviews-at-microsoft-how-to-code-review-at-a-large-software-company/

https://www.michaelagreiler.com/code-reviews-at-microsoft-how-to-code-review-at-a-large-software-company/

Static Analysis Tools

• Coding standards

• List of rules

• (Dis/en)abling rules

• Reviewing warnings

• False positives

• Use IDE plugins to see warnings
• Agree in team which

rule sets to be used.

• Checkstyle:

• Basic formatting

• PMD

• Design faults

• Find SpotBugs

• Design faults

• All: libraries of configurable rules.
• .pmd, checkstyle.xml

77

3.3

79

Many rules are
metric-based.

Issue warning if
metric is above
threshold.

False Positive / Negative

• Many static analysis tools based on heuristics

• Correct positive: Warning, and a problem (let’s fix it! J)
• Correct negative: No warning, no problem. (no need to act J)

• False positive: Warning, but not a problem (annoying L)
• False negative: Problem, but no warning (possibly dangerous L)

Comply or Explain

• Rule checking is enabled because rules are right in 99% of the cases.

• For the 1% unjustified code warnings:
• Add appropriate @SuppressWarnings

of specific rule.

• For your gitlab regrets:
• Add comment in report explaining how you now would do things differently

83

Types of Static Analysis Tools

• Lexical: Words, strings, and regexps.

• Syntactic: Tree of program structure

• Control flow graph

• Data flow graph

• Symbolic execution

(Code) Metrics

• Goal: “Assess software complexity”

• Question: “How complex is the conditional logic in the code?”

• Metrics:
• “Nr of if-statements”,
• “Nr of conditions in if-statements”
• “Nr of switch statements”
• …

3.3.2

Example Class-Level Metrics

• Volume: Nr of lines

• Complexity: Nr of if-statements per method

• Coupling: Nr of classes a class depends on

• (Lack of) Cohesion: correlation between variables and methods

Will be discussed
when as part of “code

coverage” lecture

Cyclomatic
Complexity

Software Metrics Best Practices

• Raw values need to context to become
meaningful
• Use a benchmark
• Focus on trends
• Focus on worst (highest risk) 10%

• Measure with a clear goal
• Metric may signal problem

• Treat the problem, not the metric

• Adopt palette of metrics measuring
different characteristics

E. Bouwers, J. Visser, and A. van Deursen.
Getting what you Measure. CACM, May 2012

[Intermezzo: Undecidable Problems]

• Most interesting properties you’d want to test are undecidable.

• Thus, even with the cleverest AI possible, there is no systematic
procedure to demonstrate such properties.

• Such properties can be reduced to the “Halting Problem”:
• A general algorithm to the problem of determining whether a program and a

given input will halt or not cannot exist for all program-input pairs.

91

Chapter 3 Key Points

• Static analysis is based on code analysis, not code execution
• Many properties of interest are undecidable
• Static analysis is often based on heuristics

• Can lead to false positives or negatives

• Static analysis are based on rule sets
• Agree on one, then comply or explain

• Code review is also about knowledge transfer
• Interpreting metrics requires context and root cause analysis

92

93

How can I know that
my program won’t stop?

• Can I just try it?

• You may have to wait
infinitely long

94

How can I know that
my program won’t stop?

• Can I carefully read it?

• That may help.
But real programs are
very complex.

http://www.flickr.com/photos/abee5/8314929977/

95

How can I know that
my program won’t stop?

• Isn’t there some other program that can tell me if my program will
ever stop?

• Can’t TU Delft come up with a clever program that can check for any
other program whether it will loop for ever?

96

Wanted!

Does-it-halt?Any
program

Yes!

No!

But provably impossible to make!!

97

