Software testing
and Quality
Engineering

Lecture 2: Foundations

CSE1110
Mauricio Aniche, Arie van Deursen

Delft University of Technology

Kazimir Malevich, Eidght Red Rectangles, Wikipedia

https://en.wikipedia.org/wiki/en:Kazimir_Malevich

Labwork Announcements

* What should be in the report?
* Answers to all the questions!

e Today’s (Friday April 26) labwork session?
* You are all welcome to join today, even if it is not your group

Labwork Announcements: Peer Review Y

* Peer review
* Grade your self, given rubrics
* Grade a randomly assigned (anonymous) students
* Make sure your code (comment) does not reveal your identity

* Be careful in your comments.
* Double check automatically generated javadocs...

e Upload zipped (src + pdf) file into the “peer” system.

* Conducting peer review is mandatory

* Timing is tight: All deadlines are strict EX;TS;'S;’S:SZII’;:'&'

* Please don’t fail your BSA by missing a deadline

Labwork: Group Creation Deadline

* Today, 1pm — FIRM DEADLINE

* Be in a single group
* With exactly two members

* You can already start from github/serg-delft/jpacman

Running Checkstyle in IntelliJ?

Iem Refactor Build Run Tools VCS Window

- aa F— -~

Inspect Code... 13, pa . .
. i Enter inspection name:
dev Code Cleanup... En/iq - - -
it Silent Code Cleanup b { . checkstyld J
¢ st Run I.nspectlon by N.ame... . _ﬁ&gl ' OISV real-time scan Checkstyle

Configure Current File Analysis... X {3H |

View Offline Inspection Results... = | Safe cast with 'return' should be replaced with 'if' type check Kotlin | Style issues fig

Infer Nullity... Redundant type checks for object Kotlin | Style issues jig

Locate Duplicates... E | Replace size zero check with 'isEmpty()" Kotlin | Style issues fig

= Replace size check with 'isNotEmpty()" Kotlin | Style issues jig

§ = cuerage Dala -\.3€F6 .‘egrl Unnecessary 'null' check before 'equals()' call Java | Code style issues g
@, Analyze Dependencies... Z Equality check can be used instead of elvis for nullable boolean check Kotlin | Style issues i

Analyze Backward Dependencies... Press .71 or _{ to navigate through the search history

Analyze Module Dependencies...

Analyze Dependency Matrix... -t

y p. y ; CheckStyle Scan
Analyze Cyclic Dependencies... ¢ the usé

% 3 Rules: JPacman Checkstyle Rules

Analyze Data Flow to Here

Analyze Data Flow from Here Launchelg z LB Checkstyle found no problems in the flle(s
©
=
Skt 2 3 Check Module
*/ N
@AfterEach um o

H 5

Might Fail when Run with “Check Project”

7: Structure

¥ 2: Favorites

CheckStyle Scan

X

>

s’ Rules: JPacman Checkstyle .

[0l

Ll The scan failed due to an error - please see the event log for more information

»|«

Event Log

Check Project 4

>»

“ >

Run “check module instead”

Exclude resources folder from checkstyle.

public class AmazingPointCalculator implements nl.tudelft.jg
private int pelettesEaten;
private static java.util.List<nl.tudelft.jpacman.board.Direc
private static java.util.List<nl.tudelft.jpacman.board.Direc
public AmazingPointCalculator() { /* compiled code */ }
public void collidedWithAGhost(nl.tudelft.jpacman.level.Pl

public void consumedAPellet(nl.tudelft.jpacman.level.Play¢

— —
v @src Reformat Code \sL
> B@ default-test - N
Optimize Imports ~X0
v [main
. Delete... ®
> I java
v DB resources Build Module 'jpacman_main'
> @8 META-INF N .
Rebuild 'scoreplugins' 38F9

v EJ scoreplugins

AmazingPoin Reveal in Finder

> EJ sprite & Open in Terminal

) board.txt
8 X E Pitest all tests in module

scorecalc.prope
E Pitest classes in 'scoreplugins’

> g test
B .checkstyle Local History >
4 .editorconfig Git N
@ .gitignore
& Synchronize 'main/.../scoreplugins’
@ .gitlab-ci.yml
& .pmd ¥ Compare With... %D
.travis.yml
0 AUTHORS.md Remove BOM 9 Load Path Root
M build.gradle

. ASM Bytecode Viewer
== checkstyle.xml
Do DML

SERG-Delft / jpacman ® Unwatch ~

Code Issues 1 {9 Pull requests 0 Projects 0 Wiki Insights Settings

Suppress spotbugs false positive in Java 11 #2/

3Gl casperboone merged 2 commits into master from java-11-false-positive Ee& a day ago

(¥ Conversation 1 -0- Commits 2 #/ Checks 2 Files changed 3

E casperboone commented a day ago Member

In Java 11 SpotBugs reports an issue about a redundant nullcheck for try with resources.

Unfortunately, this is a common issue with no fix available:

e spotbugs/spotbugs#259
e spotbugs/spotbugs#756

This PR suppresses the warning.

I've also added JDK 11 to the Travis config (we would have been able to see the error if we/l had done
this earlier &)) .

ges and moving them around

ports isolating chan

B. sup
ussing changes

s identifying and disC

c. support
of distr'\buted develo

D. scales 0 1000s pers

£. All of the above

Sharing Changes With the “Origin” Remote

“origin”
Repository

Bob

commit
Repository Repository
mit

Change Stage Change Stage

“origin” cloned “upstream”
Repository

Repository

EWI gitlab server github.com/serg-delft/jpacman

Your laptop

Alice

Repository

git remote add upstream https://github.com/SERG-Delft/jpacman.git
git fetch upstream

git merge upstream/master -m "Merge remote-tracking branch 'upstream/master'"

Somewhat safer

git status

if there is any change commit first

if the current branch isn’t master checkout master
gradle test

always make sure you run your test before any change

now your all set to merge in more changes

git remote add ...
git fetch ...

git merge ...

https://learngitbranching.js.org/

C' [pcottle.github.io/learnGitBranching/ w =

Welcome to LearnGitBranching!

This application is designed to help beginners grasp the powerful concepts behind branching
when working with git. We hope you enjoy this application and maybe even learn something!

Demo!

If you have not seen the demo, please check it out here:

Annoyed at this dialog? Append
convenience:

https://learngitbranching.js.org/

nnnnnnnnnnnnnnnn

oftware Testing?

Reliable Knowledge inS

ing is all about making trade-offs

|||||||||||||

« Software test
« Becomes easier with experience\.
FOUNDATIONS O
SOFTWARE
tterns, and processes are codified experience IEBSCTlNG

. Strategies, P2

« You will need 1o know them!

« Our body of knowledge grows as reflective engineers / researchers:
. Codify their knowledge and pass it on
« Analyze successes and failures and reporton those
« Propose, implement, and evaluate novel testing strategies

13

Terminology: Failure

“Deviation of the component or system from its expected delivery,
service or result”

“Manifested inability of a system
to perform required function”

1.1.2

A fatal exception BE has occurred at B8828:CBB11E36 in UXD UMM(B1) +
ABA1BE36. The current application will be terminated.

» Press any key to terminate the current application.

% Press CTRL+ALT+DEL again to restart your computer. You will
lose any unsaved information in all applications.

Press any key to continue

A fatal exception BE has occurred at B8828:CBB11E36 in UXD UMM(B1) +
ABA1BE36. The current application will be terminated.

» Press any key to terminate the current application.
% Press CTRL+ALT+DEL again to restart your computer. You will
lose any unsaved information in all applications.

Press any key to continue

Windows failure leads to “blue screen of death”.

1.1.2

Terminology: Defect / Fault

“Flaw in component or system
that can cause the component or system
to fail to perform its required function”

“A defect, if encountered during execution,
may cause a failure of the component or system”

Synonym: Fault

static 0SStatus

SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, SSLBuffer .

uint8_t *signature, UIntl6 signaturelen

{
0SStatus err;
if ((err = SSLHashSHAl.update(&hashCtx, &serverRandom)) != @)
goto fail;
if ((err = SSLHashSHAl.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;
if ((err = SSLHashSHAl.final(&hashCtx, &hashOut)) != 9)
goto fail;
fail:

SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;

18

http://avandeursen.com/2014/02/22/gotofail-security/

static 0SStatus

SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa, SSLBuffer .

{

uint8_t *signature, UIntl6 signaturelen

0SStatus err;

if ((err = SSLHashSHAl.update(&hashCtx, &serverRandom)) != 0)
goto fail;
S S ol &hashCtx, &signedParams)) != 0)

goto fail;
goto fail;
if ((err = SSLHashSHAl.final(&hashCtx, &hashOut)) != 9)

A

fail:
SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;

Fault in Apple’s Secure Socket Layer code

19

http://avandeursen.com/2014/02/22/gotofail-security/

Terminology: Error

“A human action

that produces an incorrect result”

Synonym: Mistake

1.1.2

20

Faults, Failures, and Bugs

* Failure:

* Manifested inability of a system
to perform required function.

e Defect (fault):
* missing / incorrect code

* Error (mistake)
* human action producing fault

* And thus:
» Testing: Attempt to trigger failures
* Debugging: Attempt to find faults given a failure

21

Travel Information:
Fault or Failure?

22

Travel Information:
Fault or Failure?

Travel information failure to deliver useful information,

caused by fault in code

23

Principles of Testing #1

e Testing shows the presence of defects

1.3.1

* Testing does not show
the absence of defects!

* “no test team can achieve

100% defect detection
effectiveness” (Black et al)

Principles of Testing #2:
Exhaustive Testing is

1.3.2

Principle #2: Exhaustive Testing is Impossible

B _p+ \/b2 — dac * A simple program: 3 inputs, 1 output

Tr = * a,b,c: 32 bit integers
2a 6

* trillion test cases / s.

All oceans dry

All plants dead Tests done (2.5 bill. y)

Life Cycle

of the Sun Now Red Giant Planetary Nebula
Gradual Warming

White Dwarf ...

Birth L 6 7 8 9 10 11 12 13 14

In Billions of Years (approx.) Sizes not drawn to scale

Principles of Testing #3: Test Early

 Start testing as early as possible
* To let tests guide design
» To get feedback as early as possible
* To find bugs when they are cheapest to fix
* To find bugs when have caused least damage

Requirement 1

correct
requirement

4

designed
to meet
requirement

built to meet
design

\

product works
as expected

correct functional
and non-functional
attributes delivered

Requirement 2

correct
requirement

\

designed
to meet
requirement

mistakes
made in build

product
has bugs in it

correctable defects

Requirement 3

correct
requirement

mistake
made in
design

built to
meet design

product
has design
flaws

redesign to correct
defects

Requirement 4

mistakes made
in requirement

Y

1.1.2
133

designed to meet
requirement

Faults can be introduced
at any moment in the
software development

process

built to meet
design

4

wrong product
delivered

Finding faults in different

development phases may

require different types of
testing

defects may be

hidden from the IT
team including testers

28

Cost to Repair: 1.1.2

Early Discovery Pays Off

Requirement Design Unit test Acceptanctest Post release

29

Principles of Testing #4:

Defects are likely to be Clustered

* “Hot” components requiring frequent
change, bad habits, poor developers,
tricky logic, business uncertainty,
innovative, size,

 Pareto Principle / Law of vital few:
* 80% of effects come from 20% of causes

e Use to focus test effort

If you find a bug, keep

on searching in its
‘neighborhood’

“Pareto Diagram”
for an IBM system:
70% of defects caused by
2 components.

INTF

INIT

CPLX
Cause

NLS ADDR DEFN

Principles of Testing #5:
Is there one best test method for my project?

The pesticide paradox:

Every method you use to prevent or find bugs
leaves a residue of subtler bugs
against which those methods are ineffectual.

e Re-running the same test suite again and again on a
changing program gives a false sense of security

* We need variation in testing

31

Principles of Testing #6:
Is there a single test method for any project?

antonpp
a @mordbergak
The infamous "null to null" trip with a

* Testing is context-dependent stopover in Boston, thanks !

{ LS
. -
il l Trip Details >
£ W (T N
g i

i

null to null
Sun 29 Apr 2018 @ 16:20
1h0o1m @ Stopover in Boston

null to null
*7 Fri 04 May 2018 @ 08:00

1h19m (© Stopover in Boston

CHECK IN IS NOT AVAILABLE

32

Principles of Testing #7
Absence-of-errors Fallacy

There is more to success than absence of errors
Thorough understanding of business value is necessary
“Building the software right versus building the right software.”

“Finding and removing defects is not a way to improve the overall
quality or performance of a system” — Russ Ackoff

https://embeddedartistry.com/blog/2019/2/5/beyond-continual-improvement

1.3.7

https://embeddedartistry.com/blog/2019/2/5/beyond-continual-improvement

@ The real reason Boeing's new plane crashed twice L ~»

B O e ing 7 3 7 M a,X Watch later ~ Share

d
|=] 00000 0000 0O 000

L[o

e

:E,?\/

Yox

https://www.youtube.com/watch?v=H2tuKiiznsY

https://www.youtube.com/watch?v=H2tuKiiznsY

Making steady progress on the 737 MAX software update

posted: April 17, 2019 length: 1:38

Dennds
L woeve

B ~en o .
. o oal Bl TOonT Boeng teld, where our talented test pilots
35

http://www.boeing.com/commercial/737max/737-max-software-updates.page

http://www.boeing.com/commercial/737max/737-max-software-updates.page

Some testing quotes

e “completed a 120 737 test flights”

* “totaling more than 203 hours of air time”

e “with the updated system”

e “with our leaders on board the airplane”

» “operating as designed across a range of flight conditions”

* “"have experienced the new software through simulator sessions”

* “The team of Boeing pilots, engineers, technical experts and our
partners were comprehensively testing the software

Revisiting the Principles?

Testing cannot show absence of bugs

Exhaustive testing is impossible

Testing needs to start early

Defects tend to be clustered

Pesticide paradox yields test methods ineffective

Testing is context-dependent

N o e N e

There is more to quality than absence of defects

Boeing’s effort to get the 737 Max
approved to fly again, explained

A bigger problem than a software update.

By Matthew Yglesias | @mattyglesias | matt@vox.com | Apr 5,2019, 10:30am EDT

f ¥ (7 sHare

o »

@ The real reason Boeing's new plane crashed twice
Watch later Share

Boeing 737 Max

4

\DDDODDﬁUDDDO 0 DDD@@DDDD
5 ,
S
— :
c 5 I

<

C @ https://embeddedartistry.com/blog/2019/4/1/what-can-software-organizations-learn-from-the-boeing-737-... & QA % O e

What can software organizations learn from the Boeing
737 MAX saga?

One of the largest news stories over the past month was the grounding of Boeing 737 MAX-
8 and MAX-9 aircraft after an Ethiopian Airlines crash resulted in the deaths of everyone on
board. This is the second deadly crash of involving a Boeing 737 MAX. A Lion Air Boeing
737 MAX-8 crashed in October 2018, also killing everyone on board. As a result of these
two crashes, Boeing 737 MAX airplanes have been temporarily grounded in over 41
countries, including China, the US, and Canada. Boeing also paused delivery of these

planes, although they are continuing to produce them.

https://www.vox.com/2019/4/5/18296646/boeing-
737-max-mcas-software-update

https://embeddedartistry.com/blog/2019/4/1/what-can-
software-organizations-learn-from-the-boeing-737-max-saga

38

https://www.vox.com/2019/4/5/18296646/boeing-737-max-mcas-software-update
https://embeddedartistry.com/blog/2019/4/1/what-can-software-organizations-learn-from-the-boeing-737-max-saga

Psychology of Testing

 We are all biased

 Independence of testing required:
* From self-testing to external approval
» Testers with different backgrounds

* Good knowledge of rigorous techniques and procedures required

1.5

Cognitive Bias

e “System 1”: Fast, instinctive,
emotional.

e "System 2”: slower, more
deliberative, and more logical.

e System 2 requires effort and is
happy to let System 1 do the
work

THINKING,
FAST..SLOW

R
DANILEL

KATIINEM &N

WINNER OF THE NOBEL PRIZE IN ECONOMICS

40

Example of Cognitive Bias

e “What You See is All There Is” (WYSIATI)
* Being satisfied with the evidence you see.

* Key problem in software engineering:
* “It works on my machine”
* “I've tried it, and it works”
e “All 100 tests pass, we can ship”

FAA and the 737 MAX

* “The FAA delegates some certification and technical assessments to
airplane manufacturers, citing lack of funding and resources to carry
out all operations internally”

* FAA safety engineer:

* “We were asked by management to re-evaluate what would be delegated.
Management thought we had retained too much at the FAA.”

* “There wasn’t a complete and proper review of the documents.
Review was rushed to reach certain certification dates.”

https://embeddedartistry.com/blog/2019/4/1/what-can-software-organizations-learn-from-the-boeing-737-max-saga

https://embeddedartistry.com/blog/2019/4/1/what-can-software-organizations-learn-from-the-boeing-737-max-saga

. Grady Booch @
T 5 Follow v
by @Grady_Booch

Every line of code represents an ethical and
moral decision.

43

1.6

ACM Software Engineering Code of Ethics

PUBLIC - Software engineers shall act consistently with the public interest.

CLIENT AND EMPLOYER - Software engineers shall act in a manner that is in the best interests
of their client and employer consistent with the public interest.

PRODUCT - Software engineers shall ensure that their products and related modifications
meet the highest professional standards possible.

JUDGMENT - Software engineers shall maintain integrity and independence in their
professional judgment.

MANAGEMENT - Software engineering managers and leaders shall subscribe to and promote
an ethical approach to the management of software development and maintenance.

PROFESSION - Software engineers shall advance the integrity and reputation of the profession
consistent with the public interest.

COLLEAGUES - Software engineers shall be fair to and supportive of their colleagues.

SELF - Software engineers shall participate in lifelong learning regarding the practice of their
profession and shall promote an ethical approach to the practice of the profession.

2.4 Accept and provide appropriate professional review.

High quality professional work in computing depends on professional review at all stages. Whenever
appropriate, computing professionals should seek and utilize peer and stakeholder review.
Computing professionals should also provide constructive, critical reviews of others' work.

2.5 Give comprehensive and thorough evaluations of computer
systems and their impacts, including analysis of possible risks.

Computing professionals are in a position of trust, and therefore have a special responsibility to
provide objective, credible evaluations and testimony to employers, employees, clients, users, and
the public. Computing professionals should strive to be perceptive, thorough, and objective when
evaluating, recommending, and presenting system descriptions and alternatives. Extraordinary care
should be taken to identify and mitigate potential risks in machine learning systems. A system for
which future risks cannot be reliably predicted requires frequent reassessment of risk as the system
evolves in use, or it should not be deployed. Any issues that might result in major risk must be
reported to appropriate parties.

45
https://www.acm.org/code-of-ethics

https://www.acm.org/code-of-ethics

2.2 Maintain high standards of professional competence, conduct, and
ethical practice.

High quality computing depends on individuals and teams who take personal and group
responsibility for acquiring and maintaining professional competence. Professional competence
starts with technical knowledge and with awareness of the social context in which their work may
be deployed. Professional competence also requires skill in communication, in reflective analysis,
and in recognizing and navigating ethical challenges. Upgrading skills should be an ongoing process
and might include independent study, attending conferences or seminars, and other informal or
formal education. Professional organizations and employers should encourage and facilitate these
activities.

46
https://www.acm.org/code-of-ethics

https://www.acm.org/code-of-ethics

First Student-Provided Question!

Which test level corresponds to testing a system to check if individual
component are fulfilling functionalities?

Acceptance Testing
Integration Testing

System Testing

o 0O w P

Unit Testing

First Student-Provided Question!

Which test level corresponds to testing a system to check if individual
component are fulfilling functionalities?

A. Acceptance Testing
B. Integration Testing
C. System Testing

@ D. Unit Testing

Which of the Following is Correct?

Finding a mistake requires executing a program
Finding a failure requires executing a program

Finding a defect requires executing a program.

o 0O w P

Mistakes, defects, and failures can all be found without executing
the program.

Which of the Following is Correct?

A. Finding a mistake requires executing a program
) B. Finding a failure requires executing a program
Finding a defect requires executing a program.

D. Mistakes, defects, and failures can all be found without executing
the program.

Ch.2

Software Life Cycle [Chapter 2] =

* Period of time that
* begins when a software system is conceived
* ends when the system is no longer available for use.

* Phases: concept development, requirements, design,
implementation, test, installation, retirement

* Phases may overlap and be performed iteratively

The Agile Scrum Framework at a glance ° 2.1.2
Inputs from @ :
Customers, Team, Burn Down/Up a
Managers, Execs Chart pu -
Scrum Daily Standup
Master Meeting
< ’ 5 4 24 Hour
Sprint ®
= L =T
Product Owner The Team Sprint Review
r;) (Team selects i Task @
Prioritized starting at top I Breakout m
2| ltotwhat Sk (B —
IS requireq: = i Hv.-
S todsiverby Sprint Sootenddeand Finished Work
6 | bugs to fix.. _ endof Sprint | Backlo do not change
7 g 9 ® @
8) Sprint)
Product Planning m neon rain c AGILEFORALL
5 interactive Making Agile a Reality
Backlog Meeting

©Nolen

oY ND

Sprint
Retrospective

uonepljen

Need, wish, .

. Operational

policy, law system

User prepare Acceptance
requirements test execution

System prepare System
requirements test execution
Global prepare Integration
O&,o design test execution Q‘,:}'

O@ b\’

<, ™~

(% Q
% Detailed prepare Component é\o
G design test execution &
&
\\
D
Q
&
. 2
Implementation <
Time >

UOI}eIIJIIIA

53

2.1.1

Verification versus Validation

does the software system meet the requirements specifications?

Are we building the software right?

Validation:

does the software system meet the user's real needs?
Are we building the right software?

54

2.2

Test Levels s

TESTING

o Component (unit) testing- Operational %
Units in isolation . g

* Integration testing :
Interaction between units rsquiremants - test mion |
: \ Y 4
* System testing civa e[| een

o,
5.
2 Detailed prepare Component

() 3
2 . . &
design test execution &

* Acceptance testing — v &
Focus on user needs

Time

System-level properties A) A

Test levels in right leg of V model

55

Systems Thinking / Russ Ackoff

* The defining properties of a system are properties of the whole which
none of its parts have

* A system is not the sum of the behavior of its parts, it is a product of
their interactions

* The performance of a system depends on how the parts fit, not how
they act taken separately

https://embeddedartistry.com/blog/2019/2/5/beyond-continual-improvement

https://embeddedartistry.com/blog/2019/2/5/beyond-continual-improvement

Test Types

Group of test activities
Aimed at testing a component or system
Focused on a specific test objective

23]

Test Types

 Testing of Function
* Functional testing, black box testing

 Testing of software product characteristics
* Non-functional testing

 Testing of software structure / architecture
 Structural testing, white box testing

 Testing related to changes
e Confirmation vs Regression testing

23]

Regression Testing

» Testing of a previously tested program
* Following modification
* To ensure that defects have not been introduced
* In unchanged areas of the software
* As a result of the changes made.

* Performed when the software or its environment is changed.

* Continuous delivery? Automate regression testing

2.3.4\

Testing As Software Evolves

£3

CONTINUOUS
Release DELIVERY

 The norm in software development!

* Many updates per day in modern web apps
* Current cars (wireless updates)

* Formula 1 (every two weeks)
* Aircraft (737 max compatibility)

 Dependency and compatibility management are key

* Direct test efforts to changed software

* Confirm change works as expected, without regressions.
* Automated regression testing where possible

61

Maintenance Testing (ISTQB)

e Testing after a system is stable and deployed
* Test changes to an operational system

* Test impact of changed environment to an operational system
(e.g. security updates of libraries used)

* Impact analysis:
e Determine which parts are affected by change
* Conduct regression testing for those.

24]

Chapter 2 Key Points

e Software development follows life cycle activities

* The V-Model helps reason about verification vs validation,
decomposition vs composition, and construction vs testing.

* We test at different levels
 Different test types target specific test objectives

* |terative projects do continuous regression testing and thus maximize
test automation

Static versus Dynamic Testing

Static Testing:
Testing of a component or system
at specification or implementation level
without execution of software
(e.g., reviews or static analysis)

Dynamic Testing:
Testing that involves the execution
of the software of a component or system.

3.1

3.2.1

3.2.2
Formal Reviews: Phases & Roles
Review Phases Reviewing Roles
* Planning * Moderator
* Kick-off * Author
* Preparation * Scribe
* Review meeting * Reviewers
* Rework * Managers
* Follow-up
PHILIPS &F Microsoft Google @) /) moemnve

“If you did not document it
you did not do it!”

« Inspections by Government & Notified Bodies:

 If you do not follow regulation & your internal procedures
(QMS), you cannot guarantee safety & effectiveness.

« Consequences:

» Delivery stop for sites outside USA and/or close down for
sites in the USA.

* In case of safety (patient) issues & not sticking to the law:
Jail for upper mgt.

« At Philips:
» Inspection Back-office to answer questions fast & accurately

PHILIPS

Philips Quality Management System

iXR
IVVR Process Pyramid

Ravsne: ¢ 6 5w Azpiovnd
Dio, 22-Fe0- 201

LEGEND
u] e | prececu
[oo
a Tuted
- Srecany
f— -~
: Wen e ren
: Foaes, g, Crecuan
e

s

wn
& webtwan precens

Carmwl

s iaauo

O Page
Brwnge (VM

YR RACH

Process

werkermn

Procedures

A e

ACH2NT10E xCvaNE

Tenawn

*G1204018

recfeuns
Datea Pajes x =)
erkns ropesm vatesn oo RS T
| Tow arvugy
| scvalse xcvajsn
| e whe o e wh wh wen
| foie) 508 ragesn mefricn vonfear Wergran Tianfren ronirer WO k
I = r
P—— Tov o TostLower [—— vaassn o o
Ipe— Posxring - Parceee. - Cerptares i n St r u Cti n S
KONOLIIZ ACNANEIS ACMONMIW KCMOSWT ADNAMEIE KCMOIM XEMOMM

s

l. e k"o“'l‘
E !m

Wlowan RT%

Forms &
Templates

T ol ==

I

EEET

SUPPOI

Guidelines

[ﬁl & Tutorials

NCTAMASE) ACTAMMSEN ACT-Louin

1
Revision V1.6 22-Feb-2011

PHILIPS

Types of Review

* Walkthrough
e Author in the lead

* Technical Review:
* Technical meeting to achieve consensus

* Inspection:
* Peer review of documents
* Relies on ‘visual inspection’ (= reading)
* To detect defects / violations

3.2.3

.
e
o

S -
——
~—

FICSE 2013, %

an Francisco
AS

Microsoft

Accepied for subloion by EXE (D
sopubiating $ia material for acvariaing

Expectations, Outcomes, and Challenges
of Modern Code Review

Alberto Bacchelli
REVEAL @& Faculty of Informatics
University of Lugano, Switzerland

alberto. bacchelli @ usich

Abstract—Code review Is @ commen software engineering
practice employed both in open source and industrial contexts.
Review today is bess Tormal amd more “lightweight™ than the
code inspections performsed and studied in the 705] Hids, Wc
empirically explore the
tool-based code reviews. We du:nrd Inkﬂir-nd -ld lunqnd

Christian Bird
Microsoft Research
Redmond, Washington, USA
chird @ microsoft.com

Researchers can focus their attention on the challenges Faced
by practitioners o make code review more effective.

We present an in-depth study of practices in teams thal use
modern code review, revealing what practitioners think, do,
and achieve when it comes 1o modern code review.

nﬂz-rmm BCross lliv(m tenms at Micresaft. Our mnl)
reveals that while finding defects remains the maln motivation for
review, reviews ane loss showt defects than expected and instesd

Since Micn s made up of many different teams working
on very diverse products, it gives the opporiunily o study
leams petfurrmng code review in sitw and understand their
i the benefits they derive from code review, the

provide additions] benefits such s e transfer,

teamn swareness, and creation of aMernstive solutions to problems.
Mareover, we find that code and change understanding is the key
uspect of code reviewing and that developers employ & wide range
of mechanisms to meet their understanding needs, most of which
are not met by current tools. We provide recommendations for
praciitioners and researchers,

L INTRODUCTION
Peer code review, a manual inspection of source code by
developers other than the suthor, is recognized as a valuable
twol for reducing software defects and improving the quality
of software projects (2], [1]. In 1976, Fagan foemalized a
highly structured process for code reviewing [13], based on
line-by-line group reviews, dooe in extended ings—cade

needs they have, and the problems they face.

We sel up our study as an exploratory investigation. We
started without a priori hypotheses regarding how and why
code review should be performed, with the aim of discovering
what developers and managers expect from code review, how
reviews ate conducied in practice, and what the actual outcomes
and challenges are. To that emd, we (1) observed 17 industrial
developers performing code review with various degrees of
experience and seniorily across 16 separate product teams with
distinet reviewing cultures and policies; (2) interviewed these
developers using a semi-structured interviews; (3) manually
lmpm.l:d and classified the content of 570 comments in

inspections. Over the years, researchers provided uu:lznc: on
code inspection's benelits, especially in terms of defect finding,
bt the cumbersome, time-consuming, and synchronous nalune
of this approach hinders its universal adoption in practice [32].

Nowadsys many oeganizations are sdopling more lightweight
code review practices o limil the inefliciencies of inspections.
In particular, there &s a clear trend toward the ussge of lools
developed W support code review [28]. In the context of
this paper, we deline Modern Code Review, as review thal
is (1) informsal (in contrast o Fagan-style), (2) twol-based, and
that (3) occurs regularly in practice nowadays, for example
al comparies such as Microsoft, Google [19], Facebook [36],
and in other organizations and open source software (0SS)
projects [40].

This tremd raises questions, such as: Whal are the expecta-

4 within code reviews; and (4) surveyed
163 managzn and §73 programmers.

Our results show that, although the top motivation driving
code reviews is finding defects, the practice and the aciual
oulcomes are less about finding errors than expecied: Defect
related comments comprise a small proportion and mainly
cover small logical low-level issues. On the other hand, code
review additionally provides 2 wide sp of benefits o
software teams, such as knowledge transfer, leam awareness,
and improved solutions %o problems. Moreover, we found that
conlext and change umderstamding is the key of any review.
According 1o the oulcomes they wanl 1o achieve, developers
employ many mechamisms 1o Ffllill their understanding needs,
mast of which are nol currently met by amy code review toal.

This paper makes the following contributions:

tions for code review nowadays? What are the actual
of code review? What challenges do people [ace in code review?
Arswers 10 these guestions can provide insight for both prac-
titioners and researchers. Developers and other soltware project
stakehoklers can use empirical evidence sboul expectations and
o make inf 1 ds aboul when o we code

review and how it should 6t into their development process.

578-1-4573-3075-313 © 2013 IEEE 2

EE Persons ute
Toionl putpoees, Cwating new

e T e et o
Colectve works, 122 Tesse o reces

» Chamacterizing the motivatioas of developers and manag
for code review and compare with actusl oulcomes,
« Relating the cetcomes W understanding needs and discuss
how developers achieve such needs.
Based on our hmhnss, we provide recommendations for
and mmpli for as well as outline
fulur: avenues for research.

ICSE 2013, San Francisce, CA, USA

W1 D0 BOAYS 14 o OTY w8 A%y Cument
o 10 Bavets o fats, o reesa of By coRyTGRI

of thim work i e

P PO R
ok

Why Do Programmers Do Code Reviews?

What Programmers Say:

Why Do Programmers Do Code Reviews?

Finding Defects

Code Improvements
Alternative Solutions
Knowledge Transfer
Team Awareness
Improving Dev Process

Share Code Ownership

0
]

200

400

1st reason

2" reason

[]

31 reason

Versus What They Actually Do:

The Outcomes of Code Reviews

0% 1 l}% 2(:% 30%
1

Code Improvement ||
Understanding ||
Social Communication ||
Defects ||
External Impact (]
Testing ([
Review Tool |[]
L]
[]

Knowledge Transfer
Misc

% of comments

http://alex.nederlof.com/blog/2013/05/24/the-truth-about-code-reviews/

MICHAELA GREILER

CODE REVIEW
AT MICROSOFT

How does code review work at one of
the largest software companies?

https://www.michaelagreiler.com/code-reviews-at-microsoft-how-to-code-review-at-a-large-software-company/

75

https://www.michaelagreiler.com/code-reviews-at-microsoft-how-to-code-review-at-a-large-software-company/

3.3

Static Analysis Tools

e Coding standards * Checkstyle:
e List of rules * Basic formatting %\"éhgdﬁ‘

* PMD
* Design faults

[F 'I IH d—S p Ot B u gs DON'T SHOOT TIE MESSENGER

* Design faults @

 All: libraries of configurable rules.

 (Dis/en)abling rules
* Reviewing warnings
* False positives

» Use IDE plugins to see warnings

* Agree in team which

rule sets to be used. * .pmd, checkstyle.xmi

77

& > C O Not Secure

About
Checkstyle
Release Notes
Consulting
Sponsoring
Documentation
¥ Configuration
Property Types
Filters
File Filters
¥ Running
Ant Task
Command Line
v Checks
Annotations
Block Checks
Class Design
Coding
Headers
Imports
Javadoc Comments
Metrics
Miscellaneous
Modifiers
Naming Conventions
Regexp
Size Violations
Whitespace
¥ Style Configurations
Google's Style
Sun's Style
Developers

¥ Extending Checkstyle
Writing Checks

checkstyle.sourceforge.net/checks.html

Qa % O 6

Standard Checks

The Standard Checkstyle Checks are applicable to general Java coding style and require no external
libraries. The standard checks are included in the base distribution.

The site navigation menu lets you browse the individual checks by functionality.

Checkstyle provides many checks that you can apply to your source code. Below is an alphabetical
reference, the site navigation menu provides a reference organized by functionality.

AbbreviationAsWordInName

AbstractClassName
AnnotationLocation
AnnotationOnSameLine

AnnotationUseStyle
AnonInnerLength
ArrayTrailingComma

ArrayTypeStyle

The Check validate abbreviations(consecutive capital letters)
length in identifier name, it also allow in enforce camel case
naming.

Ensures that the names of abstract classes conforming to
some regular expression and check that abstract modifier
exists.

Check location of annotation on language elements.

The check does verifying that annotations are located on the
same line with their targets.

This check controls the style with the usage of annotations.
Checks for long anonymous inner classes.

Checks if array initialization contains optional trailing
comma.

Checks the style of array type definitions.

& C' & https://pmd.github.io/latest/pmd_rules_java_design.html#c.. @ ¥ @ ®

4@ PMD Source Code Analyzer Project

© Nav Download &' Fork us on github (&' search...

CouplingBetweenObjects
Since: PMD 1.04
Priority: Medium (3)

This rule counts the number of unique attributes, local variables, and return types within an object. A
number higher than the specified threshold can indicate a high degree of coupling.

This rule is defined by the following Java class:
net.sourceforge.pmd.lang.java.rule.design.CouplingBetweenObjectsRule ('

Example(s):

import com.Blah;
import org.Bar;
import org.Bardo;

public class Foo {

private Blah varil; Many rules are

private Bar varz; A
metric-based.
//followed by many imports of unique objects

void ObjectC doWork() {
Bardo var55;

ObjectA var44; Issue warning if
ObjectZ var93;
return something; metrIC IS above
}
¥ threshold.

This rule has the following properties:
Name Default Value Description Multivalued

threshold 20 Unique type reporting threshold no

79

< C @ https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#il-an-apparent-infinite-loop-il-infinite-loop * O

B Correctness (CORRECTNESS)

NP: Method with Optional return
type returns explicit null
(NP_OPTIONAL_RETURN_NULL)

NP: Non-null field is not initialized
(NP_NONNULL_FIELD_NOT_INITIALIZED

VR: Class makes reference to
unresolvable class or method
(VR_UNRESOLVABLE_REFERENCE)

IL: An apparent infinite loop
(IL_INFINITE_LOOP)

10: Doomed attempt to append to
an object output stream
(IO_APPENDING_TO_OBJECT_OUTPUT_S

IL: An apparent infinite recursive
loop
(IL_INFINITE_RECURSIVE_LOOP)

IL: A collection is added to itself
(IL_CONTAINER_ADDED_TO_ITSELF)

RpC: Repeated conditional tests
(RpC_REPEATED_CONDITIONAL_TEST)

FL: Method performs math using
floating point precision
(FL_LMATH_USING_FLOAT_PRECISION)

CAA: Possiblx incomgatible

Correctness (CORRECTNESS)

Probable bug - an i i ing i at was probably not what the
developer intended. We strive for a low false positive rate.

NP: Method with Optional return type returns explicit null
(NP_OPTIONAL_RETURN_NULL)

The usage of Optional return type (java.util.Optional or com.google.common.base.Optional) always
means that explicit null returns were not desired by design. Returning a null value in such case is a
contract violation and will most likely break client code.

NP: Non-null field is not initialized
(NP_NONNULL_FIELD_NOT_INITIALIZED_IN_CONSTRUCTOR)

The field is marked as non-null, but isn't written to by the constructor. The field might be initialized
elsewhere during constructor, or might always be initialized before use.

VR: Class makes reference to unresolvable class or method
(VR_UNRESOLVABLE_REFERENCE)

This class makes a reference to a class or method that can not be resolved using against the
libraries it is being analyzed with.

False Positive / Negative

* Many static analysis tools based on heuristics

Correct positive: Warning, and a problem (let’s fix it! ©)
Correct negative: No warning, no problem. (no need to act ©)

False positive: Warning, but not a problem (annoying ®)
False negative: Problem, but no warning (possibly dangerous ®)

Comply or Explain

* Rule checking is enabled because rules are right in 99% of the cases.

10 src/test/java/nl/tudelft/jpacman/npc/ghost/NavigationTest.java

* For the 1% unjustified code warnings: .

* Add appropriate @SuppressWarnings
of specific rule.

+@SuppressWarnings("magicnumber")

public class NavigationTest {

* For your gitlab regrets:
* Add comment in report explaining how you now would do things differently

- Suppress spotbugs false positive in Java 11 #27 ;)
I Merged Changes from 1 commit ~ File filter... v X Clear filters Jump to... ~ e RS-

v 6 WEEEE src/main/java/nl/tudelft/jpacman/sprite/SpriteStore.java [E&

3+ dimport edu.umd.cs.findbugs.annotations.SuppressFBWarnings;

4
import java.awt.image.BufferedImage;
import java.io.IOException;
import java.io.InputStream;
:i @@ -57,6 +59,10 @@ public Sprite loadSprite(String resource) throws IOException {
* @throws IOException
* When the resource could not be loaded.
*/
62 + @SuppressFBWarnings (
63 + value = "RCN_REDUNDANT_NULLCHECK_OF_NONNULL_VALUE",
64+ justification = "false positive in java 11"
65 +)

private Sprite loadSpriteFromResource(String resource) throws IOException {
try (InputStream input = SpriteStore.class.getResourceAsStream(resource)) {
if (input == null) {
s1z

83

Types of Static Analysis Tools

* Lexical: Words, strings, and regexps.
» Syntactic: Tree of program structure
e Control flow graph \

* Data flow graph

* Symbolic execution

(Code) Metrics

e Goal: “Assess software complexity”

e Question: “How complex is the conditional logic in the code?”

* Metrics:
* “Nr of if-statements”,
* “Nr of conditions in if-statements”
* “Nr of switch statements”

3.3.2

Example Class-Level Metrics

* Volume: Nr of lines
* Complexity: Nr of if-statements per method
* Coupling: Nr of classes a class depends on

* (Lack of) Cohesion: correlation between variables and methods

.C=IE-INI+2

. C=#decC
. C=#oﬂf

ision points + 1
_statements + 1

(+ #switch cases)

c > 10: met

[C correlate

976
hod 100 complex [McCabeé, 1976]

d with #lines of code |

Will be discussed

when as part of “code
coverage” lecture

87

C @ File | /Users/arie/dev/jpacman/build/reports/jacoco/test/html/index.html

== jpacman

jpacman

Element
nl.tudelft.jpacman.level

nl.tudelft.jpacman.ui
nl.tudelft.jpacman.npc.ghost

Missed Instructions + Cov.

1 default

nl.tudelft.jpacman.board
nl.tudelft.jpacman.sprite
nl.tudelft.jpacman

nl.tudelft.jpacman.points
nl.tudelft.jpacman.game
nl.tudelft.jpacman.npc
Total

1,013 of 4,494

70%
77%
85%

0%
86%
86%
69%
60%
87%
97%
77%

Cyclomatic

Complexity

Missed Branches

269 of 613

Cov.
59%
47%
62%

0%
58%
59%
25%
75%
60%
83%
56%

Missed
70

54
43
12
<
30
12

1
10

1
277

Cxty
151
86
89
12
93
70
30
11
24

574

Missed
95

21
15
21
2
11
18
5

4

1
193

L

1,

Software Metrics Best Practices

* Raw values need to context to become
meaningful
* Use a benchmark
* Focus on trends
* Focus on worst (highest risk) 10%

* Measure with a clear goal

* Metric may signal problem
* Treat the problem, not the metric

» Adopt palette of metrics measuring
different characteristics

-l

prag

E. Bouwers, J. Visser, and A. van Deursen.
Getting what you Measure.

CACM, May 2012

DOI:10.1145/2209249.2209266

Articte development led by 2LTIQUELE
queveacmorg

‘ Four common pitfalls in using software
metrics for project management.

‘ BY ERIC BOUWERS, JOOST VISSER, AND ARIE VAN DEURSEN

Getting What
You Measure

ARE SOFTWARE METRICS helpful tools or a waste of time?
For every developer who treasures these
mathematical abstractions of software systems
there is a developer who thinks software metrics are
invented just to keep project managers busy. Software
metrics can be very powerful tools that help achieve
your goals but it is important to use them correctly, as
they also have the power to demotivate project teams
and steer development in the wrong direction.
For the past 11 years, the Software Improvement
Group hal \a:-'

> Metricin a bubble;

> Treating the metric;

» One-track metric; and

» Metrics galore.

Knowing about these pitfalls will
help you recognize them and, hopeful-
ly, avoid them, which ultimately leads
to making your project successful. As
a software engineer, your knowledge
of these pitfalls helps you understand
why project managers want to use soft-
ware metrics and helps you assist the
managers when they are applying met-
ricsin an inefficient manner. As an out-
side consultant, you need to take the
pitfalls into account when presenting
advice and proposing actions. Finally,
if you are doing research in the area of
software metrics, knowing these pit-
falls will help place your new metric
in the right context when presenting it
to practitioners. Before diving into the
pitfalls, let’s look at why software met-
ries can be considered a useful tool.

Software Metrics Steer People

“You get what you measure.” This
phrase definitely applies to software
project teams. No matter what you de-
fine as a metric, as soon as it is used to
evaluate a team, thevalue of the metric
moves toward the desired value. Thus,
to reach a particular goal, you can con-
tinuously measure properties of the
desired goal and plot these measure-
ments in a place visible to the team.
Ideally, the desired goal is plotted
alongside the current measurement to
indicate the dictance to the aal

concernigs
-
managenigs Lines of Code of a Software System
We have U
. 350
investigat
of a syste: 300
track the 250
100 syste =
€ 200
learned s] Tines of code
metrics i1 g £
article ad 100
42 coMMUNICA 50
— |
o

Jan Mar May July Sept Nov Jan
2010 2010 2010 2010 2010 2010 2011

Mar May July
2011 2011 2011

| Intermezzo: Undecidable Problems |

* Most interesting properties you’d want to test are undecidable.

* Thus, even with the cleverest Al possible, there is no systematic
procedure to demonstrate such properties.

e Such properties can be reduced to the “Halting Problem”:

* A general algorithm to the problem of determining whether a program and a
given input will halt or not cannot exist for all program-input pairs.

Chapter 3 Key Points

 Static analysis is based on code analysis, not code execution
* Many properties of interest are undecidable

e Static analysis is often based on heuristics
* Can lead to false positives or negatives

* Static analysis are based on rule sets
* Agree on one, then comply or explain

e Code review is also about knowledge transfer
* Interpreting metrics requires context and root cause analysis

93

How can | know that
my program won’t stop?

* Can |l just try it?

* You may have to wait
infinitely long

94

How can | know that
my program won’t stop?

e Can | carefully read it?

* That may help.
But real programs are
very complex.

EEEES — .
http://www.flickr.com/photos/abee5/8314929977/

95

How can | know that
my program won’t stop?

* Isn’t there some other program that can tell me if my program wiill
ever stop?

e Can’t TU Delft come up with a clever program that can check for any
other program whether it will loop for ever?

]
TUDelft

Wanted!

Any

program

Yes!
> Does-it-halt? <
No!

But provably impossible to make!!

97

