
Pragmatic Software 
Testing Education
Maurício Aniche, Felienne Hermans, Arie van Deursen

(experience report)



Teach software testing can be tricky

● ST is an elective course in many 
universities (Wong, 2012)

● Little attention is given to ST, given 
the large number of topics already 
covered (Clarke et al., 2014)

● Lack of educational tools and 
integration with other courses. 

● A clear curriculum (topic of today)



Worlds Apart

● Developers and academia talk 
about different things when it 
comes to software testing.

● Example: the term "automated 
software testing".

Garousi, Vahid, and Michael Felderer. "Worlds apart: industrial and 
academic focus areas in software testing." IEEE Software 34.5 (2017): 
38-45.



Academics

● The oracle problem
● Test case generation
● Search-based software testing
● Model-based software testing

Developers

● xUnit frameworks
● The Testing Pyramid
● Mocking
● What to test? What not to test?

(This list was not developed in a systematic way)

How to combine both perspectives?



9 key elements!

● Theory applied in the lecture.
● Real-world pragmatic discussions.
● Build a testing mindset.
● Software testing automation.
● A hands-on labwork.
● Test code quality matters.
● Design systems for testability.
● Mixture of pragmatic and theoretical books
● Interaction with practitioners.



If we look at our data…

● RQ1: What common mistakes do students 
make when learning software testing?

● RQ2: Which software testing topics do 
students find hardest to learn?

● RQ3: Which teaching methods do students 
find most helpful?



Their common mistakes

● Test coverage (416 times, 20.87%).
○ Students commonly either miss tests, i.e., they do not provide all the expected tests for a given 

piece of code, or they write tests that are not totally correct, e.g., the test does not actually test the 
piece of code.

● Maintainability of test code (407 times, 20.42%).
○ Better naming and excessive complexity, code duplication and lack of reusability, tests that could 

be split in two, better usage of test cleanup features, such as JUnit’s Before and After.

● Understanding testing concepts (306 times, 15.35%). 
○ Advantages and disadvantages of unit and system tests, and the importance of removing test 

smells.

● Boundary testing (258 times, 12.95%). 
○ Students miss some of the boundaries.



Their common mistakes

● State-based testing (247 times, 12.39%)
○ students often miss or create wrong states or events (56) and transitions (72).

● Assertions (158 times, 7.93%)
○ Missing assertions.

● Mock Objects (117 times, 5.87%)
○ how to properly verify interactions with mock objects (i.e., Mockito’s ‘verify’ method) and to explain 

when one should mock an object.

● Tools (84 times, 4.21%).
○ AssertJ and Cucumber can be tricky to use.



Topics hard to learn



Topics hard to learn

Using the JUnit framework (Q1) as 
well as to think about the Act-
Arrange-Assert pattern that 
composes any unit test (Q2) easy 
to learn.

(Matches the number of feedback 
related to tools in previous RQ)



Topics hard to learn

MC/DC is not an easy coverage 
criteria. However, structural 
testing in general was considered a 
somewhat easy topic.



Topics hard to learn

Pragmatism (choose the right test 
level, how much to test + minimum 
set of tests that gives confidence) 
is not easy to learn.



Topics hard to learn

Students think Mock Objects are an 
easy topic.

However, when it comes to best 
practice, although students overall 
perceive it as easy, TAs disagree. 
This also contradicts data in RQ1.



Favourite learning methods
We still lack books that students 
can enjoy...



Favourite learning methods
They enjoy guest lectures. 
However, they did not enjoy AMA 
as much as we'd have hoped.



Favourite learning methods
Live coding and discussions are 
appreciated.




