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Teach software testing can be tricky

e STisan elective course in many
universities (Wong, 2012)

e Little attention is given to ST, given
the large number of topics already
covered (Clarke et al., 2014)

e Lackofeducational tools and
integration with other courses.

e Aclear curriculum (topic of today)




Worlds Apart
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A Comparison of the titles of Presentationg in
several Industrig] and academjc Conferenceg
on software testing revealeq different focus
areas of Industry and academjg. This Situation
seems to pe one reason for low industry—
academia co]]aboration in Software testing,

Practitioners working in [insert any
SE subarea here). However, hon-
estly, many conferences fail to re-
ally achieve that. Certajy confer-
ences have haq Some success—fo,

Testing, Verification and  Valida-
tion (ICsT), But much more must pe
done to really “bring researchers and
Practitionerg together,”

Toward that end, we focus here
on software testing as 5 representa-
tive area of SE. To determine how in-
dustry ang academia approach sof-
ware testing, e Compared the titles
of Presentationg from selected cop.
ferences in €ach of the tyyq commu-
nities. The results shed light on one

cause of low JAC in software testing

Work in the Analysis of Software-
Testing Research and Practice.”)

Figure 1 depicts our analysjs ap-




Academics Developers

e The oracle problem e xUnit frameworks

e Test case generation e The Testing Pyramid

e Search-based software testing e Mocking

e Model-based software testing e What to test? What not to test?

How to combine both perspectives?

(This list was not developed in a systematic way)



o key elements!

Theory applied in the lecture.

Real-world pragmatic discussions.

Build a testing mindset.

Software testing automation.

A hands-on labwork.

Test code quality matters.

Design systems for testability.

Mixture of pragmatic and theoretical books
Interaction with practitioners.
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If we look at our data...

e RQ1: What common mistakes do students
make when learning software testing?

e RQ2: Which software testing topics do
students find hardest to learn?

e RQ3: Which teaching methods do students
find most helpful?




Their common mistakes

e Testcoverage (416 times, 20.87%).
o Students commonly either miss tests, i.e., they do not provide all the expected tests for a given
piece of code, or they write tests that are not totally correct, e.g., the test does not actually test the
piece of code.

e Maintainability of test code (407 times, 20.42%).
o Better naming and excessive complexity, code duplication and lack of reusability, tests that could
be splitin two, better usage of test cleanup features, such as JUnit’s Before and After.
e Understanding testing concepts (306 times, 15.35%).

o Advantages and disadvantages of unit and system tests, and the importance of removing test
smells.

e Boundary testing (258 times, 12.95%).

o Students miss some of the boundaries.



Their common mistakes

e State-based testing (247 times, 12.39%)

o students often miss or create wrong states or events (56) and transitions (72).

e Assertions (158 times, 7.93%)

o  Missing assertions.

e Mock Objects (117 times, 5.87%)
o how to properly verify interactions with mock objects (i.e., Mockito’s ‘verify’ method) and to explain
when one should mock an object.

e Tools (84 times, 4.21%).

o AssertJ and Cucumber can be tricky to use.



Topics hard to learn
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Using the JUnit framework (Q1) as
well as to think about the Act-
Arrange-Assert pattern that

composes any unit test (Q2) easy
to learn.

(Matches the number of feedback
related to tools in previous RQ)
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Topics hard to learn

Usage of JUnit Q176%
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Topics hard to learn
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Students think Mock Objects are an
easy topic.

However, when it comes to best
practice, although students overall
perceive it as easy, TAs disagree.
This also contradicts data in RQ1.



Favourite learning methods
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We still lack books that students
can enjoy...



Favourite learning methods

They enjoy guest lectures.

Lect 1 0% i '
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Live coding and discussions are
appreciated.
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