Pragmatic Software P
Testing Education TU Delft

(experience report)

Mauricio Aniche, Felienne Hermans, Arie van Deursen

Teach software testing can be tricky

e STisan elective course in many
universities (Wong, 2012)

e Little attention is given to ST, given
the large number of topics already
covered (Clarke et al., 2014)

e Lackofeducational tools and
integration with other courses.

e Aclear curriculum (topic of today)

Worlds Apart

Developers and academia ta.lr
about different things when i

comes to software testing.)
Example: the term "automate

L
software testing".

" rt: industrial an
i, Vahid, and Michae‘Fe‘derer'.ch.rldsé?;ftware 34.5 (2017):
Garousi, Vahid, areas in software testing." IE
academic focus

38-45.

FOcCus: SOFTVVARE TESTING

Worlds Apart

Industrial and
Academic Focus Areas
in Software Testing

Vahid Garousj, Hacettepe Um'versity

Michae] Felderer, Um'versity of Innsbryck

A Comparison of the titles of Presentationg in
several Industrig] and academjc Conferenceg
on software testing revealeq different focus
areas of Industry and academjg. This Situation
seems to pe one reason for low industry—
academia co]]aboration in Software testing,

Practitioners working in [insert any
SE subarea here). However, hon-
estly, many conferences fail to re-
ally achieve that. Certajy confer-
ences have haq Some success—fo,

Testing, Verification and Valida-
tion (ICsT), But much more must pe
done to really “bring researchers and
Practitionerg together,”

Toward that end, we focus here
on software testing as 5 representa-
tive area of SE. To determine how in-
dustry ang academia approach sof-
ware testing, e Compared the titles
of Presentationg from selected cop.
ferences in €ach of the tyyq commu-
nities. The results shed light on one

cause of low JAC in software testing

Work in the Analysis of Software-
Testing Research and Practice.”)

Figure 1 depicts our analysjs ap-

Academics Developers

e The oracle problem e xUnit frameworks

e Test case generation e The Testing Pyramid

e Search-based software testing e Mocking

e Model-based software testing e What to test? What not to test?

How to combine both perspectives?

(This list was not developed in a systematic way)

o key elements!

Theory applied in the lecture.

Real-world pragmatic discussions.

Build a testing mindset.

Software testing automation.

A hands-on labwork.

Test code quality matters.

Design systems for testability.

Mixture of pragmatic and theoretical books
Interaction with practitioners.

i SO SEEN AW)

S S BE

§
5|

N
 Eee mae Eet
EBE Hi
-:l-l
~ 53]

If we look at our data...

e RQ1: What common mistakes do students
make when learning software testing?

e RQ2: Which software testing topics do
students find hardest to learn?

e RQ3: Which teaching methods do students
find most helpful?

Their common mistakes

e Testcoverage (416 times, 20.87%).
o Students commonly either miss tests, i.e., they do not provide all the expected tests for a given
piece of code, or they write tests that are not totally correct, e.g., the test does not actually test the
piece of code.

e Maintainability of test code (407 times, 20.42%).
o Better naming and excessive complexity, code duplication and lack of reusability, tests that could
be splitin two, better usage of test cleanup features, such as JUnit’s Before and After.
e Understanding testing concepts (306 times, 15.35%).

o Advantages and disadvantages of unit and system tests, and the importance of removing test
smells.

e Boundary testing (258 times, 12.95%).

o Students miss some of the boundaries.

Their common mistakes

e State-based testing (247 times, 12.39%)

o students often miss or create wrong states or events (56) and transitions (72).

e Assertions (158 times, 7.93%)

o Missing assertions.

e Mock Objects (117 times, 5.87%)
o how to properly verify interactions with mock objects (i.e., Mockito’s ‘verify’ method) and to explain
when one should mock an object.

e Tools (84 times, 4.21%).

o AssertJ and Cucumber can be tricky to use.

Topics hard to learn

23% | 1%
25% | 2%
50% 219
31% 279
32% 149
40% 169
34% 499
37% 339
41% 149

Usage of JUnit Q176%

AAA pattern Q273%

Choose the test level Q329%
Mock Objects Q442%
Boundary Testing Q554%
Structural testing Q644%
Apply MC/DC Q717%
State-based testing Q830%
Best practices Q946%

Testability Q1035% 41% 259

TDD Q1131% 37% 329

Design by contracts Q1230% 54% 169
Acceptance tests Q1346% 35% 209

How much to test Q1419% 39% 429
Defensive programming Q1527% 48% 259

189
199
259

100

Exploratory Testing Q1636%

Avoiding flaky tests Q1756%

Minimum set of tests Q1835%
100

46%

26%

40%
0

Topics hard to learn

AAA pattern Q273%

ChoSEeme e e 1 o

Mock Objects Q4 42%
Boundary Testing Q554%
Structural testing Q644%

Apply MC/DC Q717%

State-based testing Q830%
Best practices Q946%
Testability Q1035%
TDD Q1131%
Design by contracts Q1230%
Acceptance tests Q1346%
How much to test Q1419%
Defensive programming Q1527%
Exploratory Testing Q1636%
Avoiding flaky tests Q1756%
Minimum set of tests Q1835%
100

o)

Usage of JUnit Q176% [N 25% |
—

1%
2%

31%
32%
40%
34%
37%
41%
41%
37%
54%
35%
39%
48%
46%
26%
40%

0 50

217
279
149
169
499
339
149
259
329
169
209
429
259
189
199
259
100

Using the JUnit framework (Q1) as
well as to think about the Act-
Arrange-Assert pattern that

composes any unit test (Q2) easy
to learn.

(Matches the number of feedback
related to tools in previous RQ)

Topics hard to learn

Usage of JUnit Q176%

AAA pattern Q273%

Choose the test level Q329%
Mock Objects Q442%

1% | MC/DCis not an easy coverage
2% | criteria. However, structural
219 . . .
‘| testingin general was considered a

279 .
149 SOMewhat easy topic.
/

169
499

Structural testing Q644%
Apply MC/DC Q717%

3
149
259
329
169
209
429
259
189

Best practices Q946%
Testability Q1035%
TDD Q1131%
Design by contracts Q1230%
Acceptance tests Q1346%
How much to test Q1419%
Defensive programming Q1527%
Exploratory Testing Q1636%
Avoiding flaky tests Q1756% 199
Minimum set of tests Q1835% 259
100 50 0 50 100

Topics hard to learn

Usage of JUnit Q176%

1% | Pragmatism (choose the right test
o |evel, how much to test + minimum
21 | set of tests that gives confidence)
is not easy to learn.

Choose the test level Q329%

ray
149
169
499
339
149

Boundary Testing Q554%
Structural testing Q644%
Apply MC/DC Q717%
State-based testing Q830%
Best practices Q946%
Testability Q1035%

TDD Q1131%

Design by contracts Q1230%

How much to test Q1419%
Defe
Exploratory Testing Q1636%

Q1756% ‘
Minimum set of tests Q1835% | |
EWaVal :C 0 x EWaVal

LIA~A4

Topics hard to learn

Usage of JUnit Q176% [N 25% | 1%
AAA pattern Q273% [25% |

Mock Objects Q4 42% |

Structural testing Q644%
Apply MC/DC Q717%
Best practices Q946%

TDD Q1131%

Design by contracts Q1230%
Acceptance tests Q1346%

How much to test Q1419%
Defensive programming Q1527%

100 50 0 50 100

Students think Mock Objects are an
easy topic.

However, when it comes to best
practice, although students overall
perceive it as easy, TAs disagree.
This also contradicts data in RQ1.

Favourite learning methods

Lectures Q1 0%
Guest lectures Q2 10%
Live coding Q3 6%

Live discussions Q4 7%

18%

PragProg book Q5 29%
ISTQB book Q6 31%

-

36%

Labwork Q7 1%

Support from TAs Q8 7%
Related papers Q9 35%
AMA sessions Q10 30%

Midterm exam Q11 9%
100

34%

-
I 19%

50

72%
75%

65%

20%

-
e
-2

80%

30%

32%

73%

00

We still lack books that students
can enjoy...

Favourite learning methods

They enjoy guest lectures.

Lect 1 0% i '
ectures Q] However, they did not enjoy AMA

| Guest lectures Q2 10% as much as we'd have hoped.

Live coding Q3 6%

Live discussions Q4 7%
PragProg book Q5 29%
ISTQB book Q6 31%
Labwork Q7 1%

Support from TAs Q8 7%
Related papers Q9 35%
AMA sessions Q10 30%

Midterm exam Q11 9%
100

Favourite learning methods

Lectures Q1 0%

Guest lectures Q2 10%

Live coding Q3 6%

Live discussions Q4 7%

PragProg book Q5 29%
ISTQB book Q6 31%
Labwork Q7 1%

Support from TAs Q8 7%
Related papers Q9 35%
AMA sessions Q10 30%

Midterm exam Q11 9%
100

100

Live coding and discussions are
appreciated.

&

Nat Pryce
@natpryce
sting Education-

o 25
ermans & Arie van Deurs

Nat Pryce
paper bY Mauricio Aniche, Eelienné H
University of Technology-

™ 4 8

en of Delft

o

GROWING

(‘) o b 4

SV Htll,(,l—Q)R,Il:ZN'I‘H)
SOFTWARE l

(GUIDED AR
JIDED BY TESTS

S -
TEVE FREEMAX

NAT PrYCI

