
Software Testing
and Quality
Engineering

Maurício Aniche and Arie van Deursen

1

Ka
zi

m
ir

M
al

ev
ic

h,
 E

id
gh

tR
ed

 R
ec

ta
ng

le
s,

 W
ik

ip
ed

ia

https://en.wikipedia.org/wiki/en:Kazimir_Malevich

Why do we test?

1. To make informed decisions about expected quality
when releasing software

2. To guide requirements elicitation, by identifying
(simple to understand) execution scenarios.

3. To guide the design of the software that we create.

2

How we test our software: Test Execution

• In modern software development, we release often

• Releasing often implies testing often:
• Automate test execution as much as possible

• Build a testing system aimed at
• exercising the system under test
• and verifying the observed behavior

3https://www.spacex.com

https://www.spacex.com/

How do we test our software: Test Design

• Decide which (of the infinitely many possible) test cases to create
• Maximize information gain
• Minimize cost

• A test strategy:
• A systematic approach to arrive at test cases
• Targeting specific types of faults
• Until a given adequacy criterion is achieved

• Test design begins at the start of your project
4

What do we test?

Test Levels

• Different levels of granularity

• Unit testing
• Integration testing
• System testing
• ...

Test Types

• Different objectives

• Functionality (old / new)
• Security
• Performance
• ...

5

Learning Objectives

• Knowledge level:
• Essential test methods, tools, techniques, ...

• Application level:
• Actually use selected test techniques

• Evaluation level:
• Decide what’s useful in your project
• Criticize, analyze, investigate, reflect, research, innovate, ...

6

Reliable Knowledge in Software Testing?

• Software testing is all about making trade-offs
• Becomes easier with experience!

• Strategies, patterns, and processes are codified experience
• You will need to know them!

• Our body of knowledge grows as reflective engineers / researchers:
• Codify their knowledge and pass it on
• Analyze successes and failures and report on those
• Propose, implement, and evaluate novel testing strategies

7

Course Material

9

Lectures

• At mixed times, in the large aula

• Please do not use your electronic

devices during the lecture

• Questions / interaction:

• Hard in the aula – (also) use the break

• Discussion forum “Lecture Q&A”

• One topic per lecture.

10

15 Lectures!

23/4: Introduction

26/4: Foundations

30/4: Functional testing

01/5: Model-based testing

03/5: Structural testing

07/5: Exploratory testing
(Jan Jaap Cannegieter)

10/5: Testability, mock objects

13/5: Software security 1

(Sicco Verwer)

15/5: Static/dynamic analysis

(Azqa Nadeem)

17/5: Test code quality

28/5: Web testing

(Frank Mulder)

07/6: Design by contract

11/6: Search-based testing

(Annibale Panichella)

14/6: Breaking changes in OS

(Tim van der Lippe)

20/6: Testing at Spring

(Stéphane Nicoll)

11

Learning in the
Labwork

• End-to-end testing
• Structural testing
• Functional testing
• State-based testing
• Decision-table based testing
• Boundary-value testing
• CORRECT
• AAA

12

github.com/SERG-Delft/jpacman

Labwork
Tools Used

• JUnit 5
• AssertJ
• Mockito
• Java 9
• IntelliJ
• Git
• Gradle
• GitLab CI

13

github.com/SERG-Delft/jpacman

Exams

• Midterm, Exam, Resit

• ~40 Multiple Choice Questions

• Midterm: May 24 (1st 10 lectures)
• Exam: July 2 (all material)
• Resit: August 16 (all material)

14

Multiple Choice:
People hate git because:

A. git’s commands are inconsistent and confusing.

B. rebasing and push forcing are overly complicated operations

C. handling merge conflicts can be a nightmare.

D. All of the above

E. None of the above.

15

Multiple Choice:
People love git because git
A. supports understanding a change in its historical context

B. supports isolating changes and moving them around

C. supports identifying and discussing changes

D. scales to 1000s of distributed developers

E. All of the above

16

Your Questions Count!
• You can propose MC questions
• Bonus points if included in the exam
• Bonus points if discussed in class

• Submit:
• 24h before next lecture
• One week before (midterm) exam
• Brightspace -> Assignment ->

“Student supplied exam questions”

https://avandeursen.com/2016/07/24/asking-students-to-create-exam-questions/
17

https://avandeursen.com/2016/07/24/asking-students-to-create-exam-questions/

Your Overall Grade

• Labwork: peer-graded.

• Must be >= 5.75

• Counts as 20% of final grade.

• Mid Term: graded.

• Can be used to improve final grade

• Then counts as 40% of finale grade

• Exam / resit:

• Must be >= 5.75

• Counts as 40 or 80% of final grade

18

Grade

=

(L + 2*max(M,E) + 2 * E) / 5

Software Quality and Testing
Lab
CSE1110

Casper Boone, Max Lopes Cunha
Delft University of Technology

Testing JPacman
Our own Java
implementation of Pac-Man

Already has some tests, but
it is your job to improve this!

Has all the basics, but could
use a few new features

Lab

4 assignments

In pairs

Different skills
Writing tests, answering theory questions and a little bit of new
implementation

Learn to write tests using different techniques
and at different levels

21

Teams

In pairs
So, that’s exactly 2 people

Same lab session

Pair programming
Show us that you worked on the assignment together:
commit often (both) and discuss changes in merge requests

22

Structure and Deadlines

Part 0: Get acquainted with the environment and tools.
Deadline: 03-05-2019, 5.00 pm - Review Deadline: 10-05-2019, 5.00 pm

Part 1: Unit tests and boundary tests.
Deadline: 17-05-2019, 5.00 pm - Review Deadline: 28-05-2019, 5.00 pm

Part 2: Structural testing and mock objects.
Deadline: 03-06-2019, 5.00 pm - Review Deadline: 10-06-2019, 5.00 pm

Part 3: System tests, state-based testing, and mocking.
Deadline: 21-06-2019, 5.00 pm - Review Deadline: 27-06-2019, 5.00 pm

UNGRADED

https://se.ewi.tudelft.nl/cse1110-2019/
23

https://se.ewi.tudelft.nl/cse1110-2019/

Peer reviewing

After submitting on Peer,
review your own solution + someone else’s
Learn about things you can improve and see
different approaches to solving the problem

Grades are based on self grading,
reviews and TA checks

24

DEVELOP IN MANAGE CHANGES ON REVIEW ON

gitlab.ewi.tudelft.nl peer.ewi.tudelft.nl

Tools

Build using gradle

Test using
• JUnit 5

• AssertJ assertions

• Mockito

26

Static Analysis

Make sure everything works, run gradle check

27

Continuous Integration

28

Project Structure

Simple Java project, mostly default setup

Pre-written tests, can serve as example

Application code

Your tests

29

Quick tips

Write clear commit messages

Use merge requests and discuss changes

Run gradle check before committing

Don’t let consecutive builds fail: fix issues first

Ask questions: if you think your test is too complicated, it probably is

Start early, the difficulty varies

30

Team Formation

Find a partner
Real life or Brightspace forum

Register your group on Brightspace
Collaboration > Groups

Create a GitLab account
Use student email and NetID as username
gitlab.ewi.tudelft.nl

TODAY!

31

Assignment

Will be released after the lecture

32

