Software Testing
and Quality
Engineering

Mauricio Aniche and Arie van Deursen

]
TUDelft

Kazimir Malevich, Eidght Red Rectangles, Wikipedia

https://en.wikipedia.org/wiki/en:Kazimir_Malevich

Why do we test?

1. To make informed decisions about expected quality
when releasing software

2. To guide requirements elicitation, by identifying
(simple to understand) execution scenarios.

3. To guide the design of the software that we create.

How we test our software: Test Execution

* In modern software development, we release often

* Releasing often implies testing often:
* Automate test execution as much as possible

* Build a testing system aimed at
* exercising the system under test
* and verifying the observed behavior

https://www.spacex.com 3

https://www.spacex.com/

How do we test our software: Test Design

* Decide which (of the infinitely many possible) test cases to create
* Maximize information gain
* Minimize cost

* A test strategy:

A systematic approach to arrive at test cases '

» Targeting specific types of faults /4
* Until a given adequacy criterion is achieved ?
o ‘

 Test design begins at the start of your project

What do we test?

Test Levels Test Types

* Different levels of granularity * Different objectives

* Unit testing * Functionality (old / new)
* Integration testing * Security

e System testing * Performance

Learning Objectives

* Knowledge level:
* Essential test methods, tools, techniques, ...

* Application level:
* Actually use selected test techniques

e Evaluation level:
* Decide what’s useful in your project
* Criticize, analyze, investigate, reflect, research, innovate, ...

Reliable Knowledge in Software Testing?

e Software testing is all about making trade-offs
* Becomes easier with experience!

 Strategies, patterns, and processes are codified experience
* You will need to know them!

* Our body of knowledge grows as reflective engineers / researchers:
* Codify their knowledge and pass it on
* Analyze successes and failures and report on those
* Propose, implement, and evaluate novel testing strategies

Course Material

Line Coverage: Lessons from JUnit
posted in by

Rex Black
Erik Van Veenendaal
Dorothy Graham

Yes, | can do it!!

In unit testing, achieving 100% statement coverage is not realistic. But what percentage woul
good testers get? Which cases are typically not included? Is it important to actually measure

coverage?
THIRD EDITION

To answer questions like these, | took a look at the test suite of itself. This is an interesting

. . .
case, since it is created by some of the best developers around the world, who care a about Pra‘.%matlc Umt Testlng
in JU

testing. If they decide not to test a given case, what can we learn from that? ava 8 With mt

Coverage Report - All Packages

Package # Classes Line Coverage Branch Coverage _ Complexity
N All Packages 21 e % 1727
» Speed 1.0x pitextensions 6 s DENSUGEN - DS 125
it framework 17 7e% [RSUSSEN o LSl 1.605
unit runner 3 e D - 2225
it textui 2 7o DINSSON s 2SN 1686
erqunt 1 o RGO 75 e Less
org lunit exgerimental 2 o NEENE & SE 15
ora.junit experimental.categories 5 100% DUNNGHSINNN :o0% DRNNEAAANN 3357
ora junitexperimental.max T B | 1.969
ora junit experimental.results 6 o DENSAONNE o~ DS 1222
org junit experimentalrunners 1 oo DN WA NA 1
L {P} A {Q} ora.junitexperimental theories 16 sew DUnESERTT] co DNSZANE 1674
£9.junit experimental theories.internal S T T | 229
org.junit.experimental theories.suppliers 2 100% DRI o DR 2
ora junitinternal 11 ove DNNORSINN o+ NSYSSINN] 1947
. : ora.junitinternalbuilders 5 oov DNSHSSINN] o SR 2
Any execution of A, org junitinternal matchers PE—— T Y | 1391
o i ora.junit internal.requests 3 cow DTSN oo NER 1429
stfartmg 'f' astatewhere Bholds ora.junitinternal.runners 18 73% NOGESEEE s> DINSSE 2.155 ff I a
* will terminate in a state where Q holds ora.junit.internal.runners. model 3 100% SSRGS o0 IRNNGARNN 15 € ngr
era.unitinternal.runners.vies 1 100 ENSSSSINN o0 [NNNENZONNN 21
ra.junitinternal.runners.statemen 7 o NSHSSRNN] 100 [N 2
ora.junit matchers 1 ow D VA WA : with Andy Hunt
ora unitruies 20 oo UNGNESIN oo DESYSIR] Lass
{ preconds } Method { postconds } erq it runner 2 o NSORGT oo IS 137 & Dave Thomas
ISTQB CERTIFICATION e e rEm=
r9.junit runner.notfication 12 100% [NOSSSINN oo% [NEE 1162
ora.junitrunners 16 sew (LSS se Lesee] 1737 edited by
org.junit.runners. model 11 s [UNESHSSUEE 7% DS 1918 Susannah Davidson Pfalzer
Report generated by Cobertura 1.9.4.1 on 12/22/12 2:25 PM.
Copyrighted Material Coverage of JUnit as measured by Cobertura
L » 1:00/10:00 » Speed 1.0x = g

Lectures

* At mixed times, in the large aula

* Please do not use your electronic
devices during the lecture

e Questions / interaction:
 Hard in the aula — (also) use the break
e Discussion forum “Lecture Q&A”
* One topic per lecture.

& (6 @ https://brightspace.tudelft.nl/d2l/le/144558/discussions/List w O

Lecture Q&A ~

Forum to post questions about the content of the lectures in case you could not
ask them during the lecture. As teachers and TAs we will try to address them
either here in the forum or in one of the next lectures.

If, as a student, you know the answer, also please offer it!

Topic Threads Posts Last Post

Lecture 1: Introduction 0 0

Questions for the introductory lecture

on April 23.

23/4:
26/4:
30/4:
01/5:
03/5:
07/5:

10/5:
13/5:

15 Lectures!

Introduction
Foundations
Functional testing
Model-based testing
Structural testing

Exploratory testing
(Jan Jaap Cannegieter)

Testability, mock objects

Software security 1
(Sicco Verwer)

15/5: Static/dynamic analysis
(Azga Nadeem)

17/5: Test code quality

28/5: Web testing
(Frank Mulder)

07/6: Design by contract

11/6: Search-based testing
(Annibale Panichella)

14/6: Breaking changes in OS
(Tim van der Lippe)

20/6: Testing at Spring
(Stéphane Nicoll)

_earning in the 000 ac-ar
_abwork

Player 1
Score: 0

* End-to-end testing

e Structural testing

* Functional testing

* State-based testing

e Decision-table based testing
* Boundary-value testing

* CORRECT

* AAA Start Stop

github.com/SERG-Delft/jpacman

Labwork
Tools Used

e JUnit 5

* Assertl]

* Mockito
* Java 9

* Intelli

e Git

* Gradle

e GitLab CI

JPac-Man

Player 1

Score: 0

Start Stop

github.com/SERG-Delft/jpacman

Exams

* Midterm, Exam, Resit
e ~40 Multiple Choice Questions

* Midterm: May 24 (1t 10 lectures)
e Exam: July 2 (all material)
 Resit: August 16 (all material)

Multiple Choice:
People hate git because:

A. git’s commands are inconsistent and confusing.

B. rebasing and push forcing are overly complicated operations

C. handling merge conflicts can be a nightmare.

D. All of the above

* E. None of the above.

Multiple Choice:

People love git because git

A. supports understanding a change in its historical context
B. supports isolating changes and moving them around

C. supports identifying and discussing changes

D. scales to 1000s of distributed developers

* E. All of the above

C | & Secure https://avandeursen.com/2016/07/24/asking-students-to-create-exam-questions/

Your Questions Count! i

Asking Students to Create Exam Questions

posted in by

* You can propose MC questions
* Bonus points if included in the exam
* Bonus points if discussed in class

L]
* Submit:
u IT:
Do you also find it hard to come up with good multiple choice questions? Then maybe you will like the idea
of letting students propose (rather than just answer) questions. A colleague suggested this idea, arguing

¢ 2 4 h b efo re n eXt I e Ct u re that it would benefit the students (creating a question requires mastering the material) and would save me
work as well.
* One week before (midterm) exam
. . This is a course for around 200 students which are evaluated based on an individual multiple choice exam
o B r I g hts p a Ce - > ASS I g n m e nt _> (besides programming work conducted in pairs).

| liked this idea, and during the last three years | have applied it in my undergrad software testing course.

“Student supplied exam questions”

https://avandeursen.com/2016/07/24/asking-students-to-create-exam-questions/

17

https://avandeursen.com/2016/07/24/asking-students-to-create-exam-questions/

Your Overall Grade

* Labwork: peer-graded.
* Must be >=5.75
* Counts as 20% of final grade.

* Mid Term: graded.

e Can be used to improve final grade
* Then counts as 40% of finale grade

 Exam / resit:
* Must be >=5.75
e Counts as 40 or 80% of final grade

Grade

(L+2*max(M,E)+2 *E) /5

18

£
1
e

Software Quality and Testing
Lab

CSE1110
Casper Boone, Max Lopes Cunha
Delft University of Technology

JPac-Man

Player 1
Score: 0

Start Stop

4 assighments

In pairs

Different skills

Writing tests, answering theory questions and a little bit of new
implementation

Learn to write tests using different techniques
and at different levels

21

In pairs
So, that’s exactly 2 people

Same lab session

Pair programming
Show us that you worked on the assignment together:
commit often (both) and discuss changes in merge requests

22

Structure and Deadlines

Part 0: Get acquainted with the environment and tools.
Deadline: 03-05-2019, 5.00 pm - Review Deadline: 10-05-2019, 5.00 pm

Part 1. Unit tests and boundary tests.
Deadline: 17-05-2019, 5.00 pm - Review Deadline: 28-05-2019, 5.00 pm

Part 2: Structural testing and mock objects.
Deadline: 03-06-2019, 5.00 pm - Review Deadline: 10-06-2019, 5.00 pm

Part 3: System tests, state-based testing, and mocking.
Deadline: 21-06-2019, 5.00 pm - Review Deadline: 27-06-2019, 5.00 pm

https://se.ewi.tudelft.nl/cse1110-2019/

UNGRADED

23

https://se.ewi.tudelft.nl/cse1110-2019/

Peer reviewing

After submitting on Peer,

review your own solution + someone else’s
Learn about things you can improve and see
different approaches to solving the problem

Grades are based on self grading,
reviews and TA checks

24

DEVELOP IN MANAGE CHANGES ON REVIEW ON

v

— GitLab

gitlab.ewi.tudelft.nl peer.ewi.tudelft.nl

Build using gradle

Test using
« JUnit 5

 Assertd assertions

 Mockito

Static Analysis

checksty e FII“I Sp@{Bugs

Make sure everything works, run gradle check

27

Continuous Integration

Pipeline Jobs 2

Status Job ID
@ Test
[() passed] #417536

@ static Analysis

| @ running | #417537

Name Coverage

& 00:00:44 .
test & 35 seconds ago 79.4077%

warnings & 00:00:13

28

Project Structure

Simple Java project, mostly default setup

> LI MAlN Gre——— Application code

> I test \
Your tests

29

Quick tips

Write clear commit messages

i

Use merge requests and discuss changes

th

Run gradle check before committing

th

Don’t let consecutive builds fail: fix issues first

ih

Ask questions: if you think your test is too complicated, it probably is

ih

Start early, the difficulty varies

th

30

Team Formation TODAY!

Find a partner
Real life or Brightspace forum

Register your group on Brightspace
Collaboration > Groups

Create a GitLab account
Use student email and NetlD as username
gitlab.ewi.tudelft.nl

31

Assignment

Will be released after the lecture

Software Testing and Quality Engineering
STQE Labwork, CSE1110
Edition 2018/2019
Arie van Deursen, Mauricio Aniche
Casper Boone, Max Lopes Cunha, Azqa Nadeem
Delft University of Technology

April 21, 2019

1 Introduction

In this document, you will find everything about your JPACMAN labwork.
The objective of this lab work is to help you learn how you can apply the various

tools and test strategies discussed during the lectures in practice. 37
You will apply these techniques to a simple game called JPACMAN, inspired by

Pacman and written in Java. The amount of codine that needs to be done is relatively

