(Automated)
Software Testing
(Automation)

Mauricio Aniche
M.FinavaroAniche@tudelft.nl

]
TUDelft

Roman Numerals

Given a string in a roman numeral
format, the program needs to convert
it to an integer.

=1, V=5, X=10, L=50, C=100, D=500,
M=1000.

Combine numerals to make numbers:
11=2, VII=7, XVI=16.

Subtractive notation: I, II, Ill, IV=4, V,
VI, VII, VIII, IX=9, X, ...

photo by Bence Boros

public int romanTolnt(String s) {
int convertedNumber = 0;
for(inti=0; i< s.length(); i++) {
int currentNumber = map.get(s.charAt(i));
static { int next = i+1 < s.length() ?
map.get(s.charAt(i+1)) : O;

public class RomanNumeral {

private static Map<Character, Integer> map;

map = new HashMap<Character, Integer>() {{

put('l’, 1); |
put('V’, 5); if(currentNumber > next)
put('X’, 10); convertedNumber += currentNumber;
put('L', 50); else
put('C’, 100); convertedNumber -= currentNumber;
out('D’, 500);)
out('M’, 1000);
1 return convertedNumber;
}
}
}

Source code in: http://bit.ly/sqt-roman-1

- CI w
L/ -~
)
(D] .
Sg X -
- -) ~
) —+ S
SEH A=
S
)
)
)
| Gl
c 0
[al
i MR W ~
S o =
S
£ Do
) ﬂiﬂ
— g P

o

R,

p—

G"‘i&

‘< Concrete
(Y Test case
6\ Instance
‘(“ :

Sy
é\ Single letter ,V,X,L,C,D, M
AN Many letters in order VI, XV

How did you do it? Did you follow any procedure?

Go to http://bit.ly/sqt-roman-exercise

(‘ - Invalid letter Y

&

F\ Valid and invalid letter VHY
g-\ Not valid 11, VV
é\ NULL <null>

@Test
public void bug() {
int result = new RomanNumeral().romanToInt("II");

Assertions.assertfquals(2, result);

Run: RomanNumeralTest.doubleDigit
P v @ 12 1= T < J » €3 Tests failed: 1 of 1 test — 136 ms
»9 M Test Results ke /Library/Java/JavaVirtualMachines/jdk-10.0.1.jdk/Contents/Home/bin/java ...
v RomanNumeralTest 136 ms testdi. A tionFailedE
gy org.opentest4j.AssertionFailedError:
> doubleDigit() 136 ms Expected :2
Actual :0
<Click to see difference>
<5 internal calls>
at tudelft.sqt.RomanNumeralTest.doubleDigit(RomanNumeralTest.java:19) <19 internal calls>
at java.base/java.util.ArrayList.forEach(ArraylList.java:1378) <9 internal calls>
— at java.base/java.util.ArrayList.forEach(Arraylist.java:1378) <21 internal calls>
»

Process finished with exit code 255

public int romanToInt(String s) {

int convertedNumber = 0;
for(int 1 = 0; 1 < s.lengthQ); 1++) {
int currentNumber = map.get(s.charAt(1));
int next = 1+1 < s.length() ?
map.get(s.charAt(1+1)) : 0;

ifccurrentNumber > next)

convertedNumber += currentNumber;
else
convertedNumber -= currentNumber;

¥

return convertedNumber;

public int romanToInt(String s) {

int convertedNumber = 0;
for(int 1 = 0; 1 < s.lengthQ); 1++) {
int currentNumber = map.get(s.charAt(1));
int next = 1+1 < s.length() ?
map.get(s.charAt(1+1)) : 0;

ifccurrentNumber >= next)

convertedNumber += currentNumber;
else
convertedNumber -= currentNumber;

¥

return convertedNumber;

Curiosity

“The absence of zero and irrational numbers, impractical and
inaccurate fractions, and difficulties with multiplication and division
prevented the Romans and the Europeans who later used the system
from making advances in number theory and geometry as the Greeks
had done in the Pythagorean and Euclidean schools.”

https://www.encyclopedia.com/science/encyclopedias-almanacs-transcripts-and-maps/roman-numerals-their-origins-impact-and-limitations

https://www.encyclopedia.com/science/encyclopedias-almanacs-transcripts-and-maps/roman-numerals-their-origins-impact-and-limitations

A little story

First job as a developer in 2004
First important project in 2006
First important bug: 2006

Tests are important!

Photo by Michael Mims
https://unsplash.com/photos/0ZL00-eDOpU

https://unsplash.com/photos/0ZL0O-eDOpU

TEST
EXECUTION

TEST ANALYSIS
& TEST DESIGN

TEST ANA TEST

EXECUTION

@Test

void singleDigit() {
Assertions.assertEquals(1, new RomanNumeral().romanTolnt("I"));
Assertions.assertEquals(5, new RomanNumeral().romanTolnt("V"));
Assertions.assertEquals(10, new RomanNumeral().romanTolnt("X"));
Assertions.assertEquals(50, new RomanNumeral().romanTolnt("L"));
Assertions.assertEquals(100, new RomanNumeral().romanTolnt("C"));
Assertions.assertEquals(500, new RomanNumeral().romanTolnt("D"));
Assertions.assertEquals(1000, new RomanNumeral().romanTolnt("M"));

}

@Test All tests in
void repetition() { http://bit.ly/sqt-roman-2

Assertions.assertEquals(2, new RomanNumeral().romanTolnt("1l"));
Assertions.assertEquals(20, new RomanNumeral().romanTolnt("XX"));

}

@Test

void manyLettersinOrder() {
Assertions.assertEquals(1000, new RomanNumeral().romanTolnt("VI"));
Assertions.assertEquals(1000, new RomanNumeral().romanTolnt("XV"));

}

What are the advantages?

FLOVETEST

* Too slow = Too Fast

* Too expensive = Machine is cheap

* Not easy to reproduce = Reproducible
* Susceptible to failures = No failures

e ... boring! = Very very cool!

e But there’s a learning curve (as with any technique).

“But if you write 100 lines of production code,
now you’ll write only 50, as the other 50 are

testing. Therefore, you are less productive.”
— says a bad manager.

Not true.

* You spend a lot of time in executing manual tests.
* Now, you will spend it only once: to write the test.

* Teams with automated test suites spend less time debugging.

George, B., Williams, L., An Initial Investigation of TDD in Industry. ACM Symposium on Applied Computing. Melbourne, Florida, USA, 2003.
Janzen, D., Software Architecture Improvement through Test-Driven Development. Conference on Object Oriented Programming Systems Languages and
Applications, ACM, 2005

TEST ANALYSIS TEST
& TEST DESIGN EXECUTION

| told you to use
vour hearts
when designing
the tests!

What's the problem with that?

N .
\ A systematic
approach

would be
better!

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.41, NO.5, MAY 2015 507

The Oracle Problem in Software
Testing: A Survey

Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo

Abstract—Testing involves examining the behaviour of a system in order to discover potential faults. Given an input for a system,
the challenge of distinguishing the corresponding desired, correct behaviour from potentially incorrect behavior is called the “test
orgcle . . .
w4 The literature on test oracles has introduced techniques for oracle
testingo . .
==l gutomation, including modelling, specifications, contract-driven
= development and metamorphic testing. When none of these is
"““1completely adequate, the final source of test oracle information
1 ol remains the human, who may be aware of informal specifications,
Mi‘“i expectations, norms and domain specific information that provide
e n] INformal oracle guidance.
the System|
Howeve
the problen
icantly less attention, and remains comparatively less well- Where no specification of the properties of the SU
solved. This current open problem represents a significant exists, one may hope to construct a partial test oracle that
bottleneck that inhibits greater test automation and uptake can answer questions for some inputs. Such partial test

~E A1t ntad Fackirmor roatbhade AarnAd FAanle rmvvara artdalsy LA ~rvmarlac Amrn e ~anrctriietad 10t rmvatkarri vt e Facki e

Annibale Panichella will talk
about automated testing
generation on June 11t

“Testing is different from writing tests.
Developers write tests as a a way to give them
space to think and confidence for refactoring.
Testing focuses on finding bugs. Both should
be done.”

https://medium.com/@mauricioaniche/testing-vs-writing-tests-d817bffeabbc

Find systematic and/or
automated ways to designh and
execute tests!

License

* You can use and share any of my material (lecture slides, website).
* You always have to give credits to the original author.
* You agree not to sell it or make profit in any way with this.

* Material that | refer has its own license. Please check it out.

'I,';U Delft @G)@@

