
Software Quality and Testing
SQT Labwork, CSE1110

Edition 2018/2019

Arie van Deursen, Maurı́cio Aniche
Casper Boone, Max Lopes Cunha, Azqa Nadeem

Delft University of Technology

June 11, 2019

1 Part III: System tests, model and state-based testing

1.1 System Testing
It is time for you to write some system/end-to-end tests. And we’ll derive tests directly from the
requirements document.

The requirements for JPacman are contained in doc/scenarios.md. They are written in an user
story style, as suggested by agile methodologies1. We can still use JUnit to write system tests.

• The first system test is already written in the framework. Check the StartupSystemTest
class that is inside of the nl.tudelft.pacman.integration package.

• Turn User Story 4 (suspend the game) into a working system test case. You should createExercise 1
a nl.tudelft.pacman.integration.suspension package. Add references to the
scenario you are testing for each case.

• Next, turn scenarios 2.1, 2.2, and 2.3 of User Story 2 in a working system test case in aExercise 2
new class. After all, having a single file with all our acceptance tests can harm the compre-
hensibility of the test suite. Note that you may need to use launcher’s withMapFilemethod.

Look at the getResourcesAsStream method that will be used by the MapParser in
the parseMap method when using the withMapFile map and search the Java documen-
tation for what it does and what kind of path it expects. Supplying custom maps (i.e., smaller
maps you create yourself just for testing purposes) makes this assignment much easier!

• Consider scenarios 2.4 and 2.5. Explain why it is harder to create system test cases (whenExercise 3
compared to your previous experience with unit testing) for these scenarios.

Use the smaller map to create system tests for scenarios 2.4 and 2.5.Exercise 4
1A good book about the topic: User Stories Applied, by Mike Cohn. https://www.mountaingoatsoftware.com/

books/user-stories-applied

1

https://www.mountaingoatsoftware.com/books/user-stories-applied
https://www.mountaingoatsoftware.com/books/user-stories-applied


To make testing easier, remember that we can test the game with a smaller map. The de-
fault map is included in the framework, in src/main/resources/board.txt. Create
a new map for testing purposes, and put it in your solution in the src/test/resources
folder.

• Answer the question in exercise 3 for User Story 3 (moving monsters).Exercise 5

1.2 State Machines
In this exercise, we will experiment with model-based testing through state machine models.

• Create a state machine model for the state that is implicit in the requirements contained inExercise 6
doc/scenarios.md. The state chart should specify what happens when pausing, winning,
losing, etc.

You should use UML notation for state machines. Consider using a UML drawing tool such
as UMLet.

• Derive a transition tree from the state machine.Exercise 7

• Compose a state (transition) table. Specify test cases for (state, event) pairs not contained inExercise 8
your diagram.

• Write a test class for the Game.game class containing the tests you just derived from theExercise 9
state-transition table/tree. If you think you need additional test cases, explain why, and add
them to your test class.

Hint 1: An easy way to create a Game class is by using the Launcher#withMapFile.

Hint 2: Use (some) mocking to increase observability.

1.3 Multi-Level Games
In the last part, we are going to extend JPacman’s functionality in a test-driven manner. This is your
chance to try Test-Driven Development. Go for it!

The functionality to add is that after winning, up to three next levels can be played. We’ll look
at test cases, requirements, design, and code.

• Provide a new user story and corresponding scenarios for dealing with levels, in doc/scenarios.mdExercise 10
Hint: Two scenarios is enough.

• Adjust the state machine from Exercise 6 so that it accommodates the multiple level function-Exercise 11
ality. Also, derive the new transition tree.

• Derive new test cases for this new state machine. Which test cases that you earlier designedExercise 12
can be reused? Which ones must be adjusted?

2



• Create a new top level MultiLevelLauncher (in the src folder of your own solution), which isExercise 13
a subclass of the framework’s Launcher. For now, its functionality will be exactly the same as
the regular launcher.

• Create a new MultiLevelGame which extends Game. For now, its behavior can be exactlyExercise 14
the same as Game. Adjust the MultiLevelLauncher so that its makeGame method
actually creates a MultiLevelGame, and its getGame method returns it.

Hint:

private MultiLevelGame multiGame;

@Override
public MultiLevelGame getGame() {

return multiGame;
}

• Reengineer your state machine test suite in JUnit, so that it can be applied to both a regularExercise 15
Game/Launcher, and the new MultiLevelLauncher.

• Now that all existing tests pass on the old and the new launcher, add the specific multi-levelExercise 16
test cases as designed in Exercise 12.

Note: These tests will indeed fail, as you haven’t implemented multi-level functionality yet.

• Adjust the implementation to make all multi-level tests pass.Exercise 17

• Inspect and report the coverage of your multi-level implementation. If necessary, refine /Exercise 18
improve the tests to obtain the desired level of coverage. For those parts that are not covered,
explain why you decided not cover them.

1.4 Submit Part III

• Briefly reflect on the results of your work and the JPacman framework. List three things youExercise 19
consider good (either in your solution or in the framework), and list three things you consider
annoying or bad, and propose an alternative for them.

• Finalize all code, inspect the warnings in GitLab, double check that all tests pass, commit, andExercise 20
push to git for the last time. Upload report and submit assignment. Do not forget to create
a zip file to Peer containing your (anonymized) report and your final source. Double-check
your zip file to make sure everything is ok!

3


	Part III: System tests, model and state-based testing
	System Testing
	State Machines
	Multi-Level Games
	Submit Part III


